These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17136546)

  • 1. Absence of circadian and photoperiodic conservation of energy expenditure in three rodent species.
    Refinetti R
    J Comp Physiol B; 2007 Apr; 177(3):309-18. PubMed ID: 17136546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is energy expenditure in the hamster primarily under homeostatic or circadian control?
    Refinetti R; Menaker M
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):449-53. PubMed ID: 9192315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian organization in a diurnal rodent, Arvicanthis ansorgei Thomas 1910: chronotypes, responses to constant lighting conditions, and photoperiodic changes.
    Challet E; Pitrosky B; Sicard B; Malan A; Pévet P
    J Biol Rhythms; 2002 Feb; 17(1):52-64. PubMed ID: 11837949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily activity patterns of a nocturnal and a diurnal rodent in a seminatural environment.
    Refinetti R
    Physiol Behav; 2004 Sep; 82(2-3):285-94. PubMed ID: 15276790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of photoperiod on daily locomotor activity, energy expenditure, and feeding behavior in a seasonal mammal.
    Warner A; Jethwa PH; Wyse CA; I'anson H; Brameld JM; Ebling FJ
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1409-16. PubMed ID: 20200136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Period length of the light-dark cycle influences the growth rate and food intake in mice.
    Campuzano A; Cambras T; Vilaplana J; Canal MM; Carulla M; Díez-Noguera A
    Physiol Behav; 1999 Nov; 67(5):791-7. PubMed ID: 10604852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise attenuates the metabolic effects of dim light at night.
    Fonken LK; Meléndez-Fernández OH; Weil ZM; Nelson RJ
    Physiol Behav; 2014 Jan; 124():33-6. PubMed ID: 24184414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian and photoperiodic time measurement in male Syrian hamsters following lesions of the melatonin-binding sites of the paraventricular thalamus.
    Ebling FJ; Maywood ES; Humby T; Hastings MH
    J Biol Rhythms; 1992; 7(3):241-54. PubMed ID: 1330085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiodic control of body weight and energy metabolism in Syrian hamsters (Mesocricetus auratus): role of pineal gland, melatonin, gonads, and diet.
    Bartness TJ; Wade GN
    Endocrinology; 1984 Feb; 114(2):492-8. PubMed ID: 6690288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the circadian system mediates photoperiodic nonresponsiveness in Siberian hamsters: the effect of running wheel access on photoperiodic responsiveness.
    Freeman DA; Goldman BD
    J Biol Rhythms; 1997 Apr; 12(2):100-9. PubMed ID: 9090564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daily rhythms of body temperature and heat production of sibling Mastomys species from different ecosystems--the response to photoperiod manipulations.
    Haim A; Zubidat AE; van Aarde RJ
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Dec; 151(4):505-10. PubMed ID: 18678267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily novel wheel running reorganizes and splits hamster circadian activity rhythms.
    Gorman MR; Lee TM
    J Biol Rhythms; 2001 Dec; 16(6):541-51. PubMed ID: 11760012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian clock resetting by sleep deprivation without exercise in Syrian hamsters: dark pulses revisited.
    Mistlberger RE; Belcourt J; Antle MC
    J Biol Rhythms; 2002 Jun; 17(3):227-37. PubMed ID: 12054194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of food deprivation on locomotor activity, plasma glucose, and circadian clock resetting in Syrian hamsters.
    Mistlberger RE; Webb IC; Simon MM; Tse D; Su C
    J Biol Rhythms; 2006 Feb; 21(1):33-44. PubMed ID: 16461983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of photoperiod on body weight gain, and daily energy intake and energy expenditure in Japanese quail (Coturnix c. japonica).
    Boon P; Visser GH; Daan S
    Physiol Behav; 2000; 70(3-4):249-60. PubMed ID: 11006423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of spontaneous activity to daily energy expenditure of adult obese and lean Zucker rats.
    Keesey RE; Swiergiel AH; Corbett SW
    Physiol Behav; 1990 Aug; 48(2):327-31. PubMed ID: 2255740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic consequences of timed feeding in mice.
    Shamsi NA; Salkeld MD; Rattanatray L; Voultsios A; Varcoe TJ; Boden MJ; Kennaway DJ
    Physiol Behav; 2014 Apr; 128():188-201. PubMed ID: 24534172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.