These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17136546)

  • 21. Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms.
    Gorman MR; Yellon SM; Lee TM
    J Biol Rhythms; 2001 Dec; 16(6):552-63. PubMed ID: 11760013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age, but not pineal status, modulates circadian periodicity of golden hamsters.
    Morin LP
    J Biol Rhythms; 1993; 8(3):189-97. PubMed ID: 8280908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Twenty-four-hour profiles of serum leptin in siberian and golden hamsters: photoperiodic and diurnal variations.
    Horton TH; Buxton OM; Losee-Olson S; Turek FW
    Horm Behav; 2000 Jun; 37(4):388-98. PubMed ID: 10860682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting.
    Gorman MR; Steele NA
    J Biol Rhythms; 2006 Jun; 21(3):195-205. PubMed ID: 16731659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are the short-photoperiod-induced decreases in serum prolactin responsible for the seasonal changes in energy balance in Syrian and Siberian hamsters?
    Bartness TJ; Wade GN; Goldman BD
    J Exp Zool; 1987 Dec; 244(3):437-54. PubMed ID: 3443832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of photoperiod on body mass, and daily energy intake and energy expenditure in young rats.
    Boon P; Visser H; Daan S
    Physiol Behav; 1997 Oct; 62(4):913-9. PubMed ID: 9284517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The homeostatic feeding response to fasting is under chronostatic control.
    Rivera-Estrada D; Aguilar-Roblero R; Alva-Sánchez C; Villanueva I
    Chronobiol Int; 2018 Nov; 35(12):1680-1688. PubMed ID: 30095282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters.
    Oklejewicz M; Hut RA; Daan S; Loudon AS; Stirland AJ
    J Biol Rhythms; 1997 Oct; 12(5):413-22. PubMed ID: 9376640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent.
    Fonken LK; Kitsmiller E; Smale L; Nelson RJ
    J Biol Rhythms; 2012 Aug; 27(4):319-27. PubMed ID: 22855576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circadian effects of light no brighter than moonlight.
    Evans JA; Elliott JA; Gorman MR
    J Biol Rhythms; 2007 Aug; 22(4):356-67. PubMed ID: 17660452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian activity rhythms in the spiny mouse, Acomys cahirinus.
    Weber ET; Hohn VM
    Physiol Behav; 2005 Nov; 86(4):427-33. PubMed ID: 16176823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A direct comparison of photoperiodic time measurement and the circadian system in European starlings and Japanese quail.
    King VM; Bentley GE; Follett BK
    J Biol Rhythms; 1997 Oct; 12(5):431-42. PubMed ID: 9376642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does unusual entrainment of the circadian system under T36h photocycles reduce the critical daylength for photoperiodic induction in Japanese quail?
    Juss TS; King VM; Kumar V; Follett BK
    J Biol Rhythms; 1995 Mar; 10(1):17-32. PubMed ID: 7632977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The regulation of seasonal changes in food intake and body weight.
    Ebling FJ; Barrett P
    J Neuroendocrinol; 2008 Jun; 20(6):827-33. PubMed ID: 18601706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repeated light-dark shifts speed up body weight gain in male F344 rats.
    Tsai LL; Tsai YC; Hwang K; Huang YW; Tzeng JE
    Am J Physiol Endocrinol Metab; 2005 Aug; 289(2):E212-7. PubMed ID: 15741238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhythmic cFos expression in the ventral subparaventricular zone influences general activity rhythms in the Nile grass rat, Arvicanthis niloticus.
    Schwartz MD; Nuñez AA; Smale L
    Chronobiol Int; 2009 Oct; 26(7):1290-306. PubMed ID: 19916832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters.
    Hakim H; DeBernardo AP; Silver R
    J Biol Rhythms; 1991; 6(2):97-113. PubMed ID: 1773090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulation of rat activity following exposure to hyperdynamic fields.
    Fuller CA; Ishihama LM; Murakami DM
    Physiologist; 1993; 36(1 Suppl):S121-2. PubMed ID: 11537417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Winter adaptations of male deer mice (Peromyscus maniculatus) and prairie voles (Microtus ochrogaster) that vary in reproductive responsiveness to photoperiod.
    Moffatt CA; DeVries AC; Nelson RJ
    J Biol Rhythms; 1993; 8(3):221-32. PubMed ID: 8280911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.