BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17136645)

  • 1. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system.
    Schulz-Wendtland R; Wenkel E; Lell M; Böhner C; Bautz WA; Mertelmeier T
    Rofo; 2006 Dec; 178(12):1219-23. PubMed ID: 17136645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental investigations for dose reduction by optimizing the radiation quality for digital mammography with an a-Se detector].
    Schulz-Wendtland R; Hermann KP; Wenkel E; Böhner C; Lell M; Dassel MS; Bautz WA
    Rofo; 2007 May; 179(5):487-91. PubMed ID: 17436182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of anode/filter combinations in digital mammography with respect to the average glandular dose.
    Uhlenbrock DF; Mertelmeier T
    Rofo; 2009 Mar; 181(3):249-54. PubMed ID: 19241602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.
    James JR; Pavlicek W; Hanson JA; Boltz TF; Patel BK
    AJR Am J Roentgenol; 2017 Feb; 208(2):362-372. PubMed ID: 28112559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing DeBRa: a detailed breast model for radiological studies.
    Ma AK; Gunn S; Darambara DG
    Phys Med Biol; 2009 Jul; 54(14):4533-45. PubMed ID: 19556683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo-based model for simulation of digital chest tomosynthesis.
    Ullman G; Dance DR; Sandborg M; Carlsson GA; Svalkvist A; Båth M
    Radiat Prot Dosimetry; 2010; 139(1-3):159-63. PubMed ID: 20203125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experiences with phantom measurements in different mammographic systems].
    Schulz-Wendtland R; Aichinger U; Lell M; Kuchar I; Bautz W
    Rofo; 2002 Oct; 174(10):1243-6. PubMed ID: 12375196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital tomosynthesis in breast imaging.
    Niklason LT; Christian BT; Niklason LE; Kopans DB; Castleberry DE; Opsahl-Ong BH; Landberg CE; Slanetz PJ; Giardino AA; Moore R; Albagli D; DeJule MC; Fitzgerald PF; Fobare DF; Giambattista BW; Kwasnick RF; Liu J; Lubowski SJ; Possin GE; Richotte JF; Wei CY; Wirth RF
    Radiology; 1997 Nov; 205(2):399-406. PubMed ID: 9356620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monochromatic x-rays in digital mammography.
    Lawaczeck R; Arkadiev V; Diekmann F; Krumrey M
    Invest Radiol; 2005 Jan; 40(1):33-9. PubMed ID: 15597018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Phantom study for the detection of simulated lesions in five different digital and one conventional mammography system].
    Schulz-Wendtland R; Hermann KP; Lell M; Böhner C; Wenkel E; Imhoff K; Schmid A; Krug B; Bautz W
    Rofo; 2004 Aug; 176(8):1127-32. PubMed ID: 15346289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital tomosynthesis aided by low-resolution exact computed tomography.
    Zeng K; Yu H; Zhao S; Fajardo LL; Ruth C; Jing Z; Wang G
    J Comput Assist Tomogr; 2007; 31(6):976-83. PubMed ID: 18043366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast tomosynthesis: Dosimetry and image quality assessment on phantom.
    Meyblum E; Gardavaud F; Dao TH; Fournier V; Beaussart P; Pigneur F; Baranes L; Rahmouni A; Luciani A
    Diagn Interv Imaging; 2015 Sep; 96(9):931-9. PubMed ID: 25908324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray tomosynthesis: a review of its use for breast and chest imaging.
    Tingberg A
    Radiat Prot Dosimetry; 2010; 139(1-3):100-7. PubMed ID: 20233756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction.
    Gomi T; Hirano H; Umeda T
    Comput Med Imaging Graph; 2009 Jun; 33(4):267-74. PubMed ID: 19237263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between the attenuation properties of breast microcalcifications and aluminum.
    Zanca F; Van Ongeval C; Marshall N; Meylaers T; Michielsen K; Marchal G; Bosmans H
    Phys Med Biol; 2010 Feb; 55(4):1057-68. PubMed ID: 20090185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.