BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17136715)

  • 1. Exploring the evaluation of net charge, hydrodynamic size and shape of peptides through experimental electrophoretic mobilities obtained from CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2006 Dec; 27(23):4631-47. PubMed ID: 17136715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration, charge, size, and shape characteristics of peptides from their CZE analyses.
    Peirotti MB; Piaggio MV; Deiber JA
    J Sep Sci; 2008 Feb; 31(3):548-54. PubMed ID: 18266265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data.
    Piaggio MV; Peirotti MB; Deiber JA
    J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2007 Oct; 28(20):3658-73. PubMed ID: 17941132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of background electrolyte on the estimation of protein hydrodynamic radius and net charge through capillary zone electrophoresis.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2005 Sep; 26(17):3232-46. PubMed ID: 16097025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects".
    Xin Y; Hess R; Ho N; Allison S
    J Phys Chem B; 2006 Dec; 110(49):25033-44. PubMed ID: 17149927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic mobilities and migrating analytes: Part 2: Hydration.
    Cross RF; Wong MG
    J Capill Electrophor Microchip Technol; 2002; 7(5-6):125-8. PubMed ID: 12546162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global chain properties of an all l-α-eicosapeptide with a secondary α-helix and its all retro d-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2014 Mar; 35(5):755-61. PubMed ID: 24293200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2009 Jul; 30(13):2328-36. PubMed ID: 19569126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The free solution electrophoretic mobility of peptides by a bead modeling methodology.
    Pei H; Allison S
    J Chromatogr A; 2009 Mar; 1216(10):1908-16. PubMed ID: 18823631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary electrophoresis of synthetic peptide standards varying in charge and hydrophobicity.
    Popa TV; Mant CT; Hodges RS
    Electrophoresis; 2003 Dec; 24(24):4197-208. PubMed ID: 14679567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the application of CZE to the study of protein denaturation.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2007 Jul; 28(13):2223-34. PubMed ID: 17539037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic mobility equation for protein with molecular shape and charge multipole effects.
    Kim JY; Ahn SH; Kang ST; Yoon BJ
    J Colloid Interface Sci; 2006 Jul; 299(1):486-92. PubMed ID: 16494895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate quantitative structure-property relationship model of mobilities of peptides in capillary zone electrophoresis.
    Ma W; Luan F; Zhang H; Zhang X; Liu M; Hu Z; Fan B
    Analyst; 2006 Nov; 131(11):1254-60. PubMed ID: 17066195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using electrophoretic mobility and bead modeling to characterize the charge and secondary structure of peptides.
    Pei H; Xin Y; Allison SA
    J Sep Sci; 2008 Feb; 31(3):555-64. PubMed ID: 18219654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial neural network modeling of peptide mobility and peptide mapping in capillary zone electrophoresis.
    Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG
    J Chromatogr A; 2005 Nov; 1096(1-2):58-68. PubMed ID: 16216258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the Offord model and artificial neural networks.
    Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG
    Electrophoresis; 2005 May; 26(10):1874-85. PubMed ID: 15825217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the electrophoretic mobility and diffusion of weakly charged peptides.
    Xin Y; Mitchell H; Cameron H; Allison SA
    J Phys Chem B; 2006 Jan; 110(2):1038-45. PubMed ID: 16471640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From small charged molecules to oligomers: a semiempirical approach to the modeling of actual mobility in free solution.
    Cottet H; Gareil P
    Electrophoresis; 2000 May; 21(8):1493-504. PubMed ID: 10832879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using charge ladders and capillary electrophoresis to measure the charge, size, and electrostatic interactions of proteins.
    Sharma U; Carbeck JD
    Methods Mol Biol; 2004; 276():189-216. PubMed ID: 15163859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.