BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 17136729)

  • 1. Comparison of the hydrolysis of polyethylene terephthalate fibers by a hydrolase from Fusarium oxysporum LCH I and Fusarium solani f. sp. pisi.
    Nimchua T; Punnapayak H; Zimmermann W
    Biotechnol J; 2007 Mar; 2(3):361-4. PubMed ID: 17136729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi.
    Alisch-Mark M; Herrmann A; Zimmermann W
    Biotechnol Lett; 2006 May; 28(10):681-5. PubMed ID: 16791721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers.
    Araújo R; Silva C; O'Neill A; Micaelo N; Guebitz G; Soares CM; Casal M; Cavaco-Paulo A
    J Biotechnol; 2007 Mar; 128(4):849-57. PubMed ID: 17306400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres.
    Heumann S; Eberl A; Pobeheim H; Liebminger S; Fischer-Colbrie G; Almansa E; Cavaco-Paulo A; Gübitz GM
    J Biochem Biophys Methods; 2006 Nov; 69(1-2):89-99. PubMed ID: 16624419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic surface modification of poly(ethylene terephthalate).
    Vertommen MA; Nierstrasz VA; Veer Mv; Warmoeskerken MM
    J Biotechnol; 2005 Dec; 120(4):376-86. PubMed ID: 16115695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules.
    Eberl A; Heumann S; Brückner T; Araujo R; Cavaco-Paulo A; Kaufmann F; Kroutil W; Guebitz GM
    J Biotechnol; 2009 Sep; 143(3):207-12. PubMed ID: 19616594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic hydrolysis of PTT polymers and oligomers.
    Eberl A; Heumann S; Kotek R; Kaufmann F; Mitsche S; Cavaco-Paulo A; Gübitz GM
    J Biotechnol; 2008 May; 135(1):45-51. PubMed ID: 18405994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential.
    Dimarogona M; Nikolaivits E; Kanelli M; Christakopoulos P; Sandgren M; Topakas E
    Biochim Biophys Acta; 2015 Nov; 1850(11):2308-17. PubMed ID: 26291558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Following multi-component reactions in liquid medium using spectral band-fitting techniques.
    Costa L; Brissos V; Lemos F; Ramôa Ribeiro F; Cabral JM
    Appl Spectrosc; 2008 Aug; 62(8):932-5. PubMed ID: 18702868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Fusarium solani f. sp. pisi cutinase in Fusarium venenatum A3/5.
    Sørensen JD; Petersen EI; Wiebe MG
    Biotechnol Lett; 2007 Aug; 29(8):1227-32. PubMed ID: 17505784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical Characterization and NMR Study of a PET-Hydrolyzing Cutinase from
    Hellesnes KN; Vijayaraj S; Fojan P; Petersen E; Courtade G
    Biochemistry; 2023 Apr; 62(8):1369-1375. PubMed ID: 36967526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.
    Wei R; Oeser T; Schmidt J; Meier R; Barth M; Then J; Zimmermann W
    Biotechnol Bioeng; 2016 Aug; 113(8):1658-65. PubMed ID: 26804057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus-Fusarium oxysporum H3.
    Gong JS; Lu ZM; Shi JS; Dou WF; Xu HY; Zhou ZM; Xu ZH
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):963-77. PubMed ID: 21720838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification.
    Nimchua T; Eveleigh DE; Sangwatanaroj U; Punnapayak H
    J Ind Microbiol Biotechnol; 2008 Aug; 35(8):843-50. PubMed ID: 18449587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins.
    Ribitsch D; Herrero Acero E; Przylucka A; Zitzenbacher S; Marold A; Gamerith C; Tscheließnig R; Jungbauer A; Rennhofer H; Lichtenegger H; Amenitsch H; Bonazza K; Kubicek CP; Druzhinina IS; Guebitz GM
    Appl Environ Microbiol; 2015 Jun; 81(11):3586-92. PubMed ID: 25795674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection.
    Wei R; Oeser T; Billig S; Zimmermann W
    Biotechnol J; 2012 Dec; 7(12):1517-21. PubMed ID: 22623363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase.
    Kim YH; Min J; Bae KD; Gu MB; Lee J
    Arch Microbiol; 2005 Oct; 184(1):25-31. PubMed ID: 16059706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of a cutinase from Fusarium roseum culmorum and its immunological comparison with cutinases from F. solani pisi.
    Soliday CL; Kolattukudy PE
    Arch Biochem Biophys; 1976 Sep; 176(1):334-43. PubMed ID: 9910
    [No Abstract]   [Full Text] [Related]  

  • 19. [Isolation of protoplasts from vegetable tissues using extracellular lytic enzymes from fusarium oxysporum f.sp. melonis].
    Alconada TM; Martínez MJ
    Rev Argent Microbiol; 1995; 27(4):191-7. PubMed ID: 8850131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic karyotyping and gene mapping of seven formae speciales in Fusarium solani.
    Suga H; Ikeda S; Taga M; Kageyama K; Hyakumachi M
    Curr Genet; 2002 Jul; 41(4):254-60. PubMed ID: 12172966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.