BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17137326)

  • 1. Protein-RNA cross-linking in the ribosomes of yeast under oxidative stress.
    Mirzaei H; Regnier F
    J Proteome Res; 2006 Dec; 5(12):3249-59. PubMed ID: 17137326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of yeast oxidized proteins: chromatographic top-down approach for identification of carbonylated, fragmented and cross-linked proteins in yeast.
    Mirzaei H; Regnier F
    J Chromatogr A; 2007 Feb; 1141(1):22-31. PubMed ID: 17188699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and quantification of protein carbonylation using light and heavy isotope labeled Girard's P reagent.
    Mirzaei H; Regnier F
    J Chromatogr A; 2006 Nov; 1134(1-2):122-33. PubMed ID: 16996067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein:protein aggregation induced by protein oxidation.
    Mirzaei H; Regnier F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Sep; 873(1):8-14. PubMed ID: 18760979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry.
    Mirzaei H; Regnier F
    Anal Chem; 2005 Apr; 77(8):2386-92. PubMed ID: 15828771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling carbonylated proteins in human plasma.
    Madian AG; Regnier FE
    J Proteome Res; 2010 Mar; 9(3):1330-43. PubMed ID: 20121119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of oxidized proteins in rat plasma using avidin chromatography and tandem mass spectrometry.
    Mirzaei H; Baena B; Barbas C; Regnier F
    Proteomics; 2008 Apr; 8(7):1516-27. PubMed ID: 18383005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of carbonylated peptides using Girard P reagent and strong cation exchange chromatography.
    Mirzaei H; Regnier F
    Anal Chem; 2006 Feb; 78(3):770-8. PubMed ID: 16448050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creation of allotypic active sites during oxidative stress.
    Mirzaei H; Regnier F
    J Proteome Res; 2006 Sep; 5(9):2159-68. PubMed ID: 16944927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress studies in yeast with a frataxin mutant: a proteomics perspective.
    Kim JH; Sedlak M; Gao Q; Riley CP; Regnier FE; Adamec J
    J Proteome Res; 2010 Feb; 9(2):730-6. PubMed ID: 19957947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein aggregation, metals and oxidative stress in neurodegenerative diseases.
    Tabner BJ; El-Agnaf OM; German MJ; Fullwood NJ; Allsop D
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1082-6. PubMed ID: 16246050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale analysis of the human ubiquitin-related proteome.
    Matsumoto M; Hatakeyama S; Oyamada K; Oda Y; Nishimura T; Nakayama KI
    Proteomics; 2005 Nov; 5(16):4145-51. PubMed ID: 16196087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics identification of oxidatively modified proteins in brain.
    Sultana R; Perluigi M; Butterfield DA
    Methods Mol Biol; 2009; 564():291-301. PubMed ID: 19544029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA damage and surveillance under oxidative stress.
    Li Z; Wu J; Deleo CJ
    IUBMB Life; 2006 Oct; 58(10):581-8. PubMed ID: 17050375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin.
    Thaysen-Andersen M; Jørgensen SB; Wilhelmsen ES; Petersen JW; Højrup P
    Vaccine; 2007 Mar; 25(12):2213-27. PubMed ID: 17240009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxidative stress on protein thiols in the blue mussel Mytilus edulis: proteomic identification of target proteins.
    McDonagh B; Sheehan D
    Proteomics; 2007 Sep; 7(18):3395-403. PubMed ID: 17722142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics.
    Dalle-Donne I; Scaloni A; Giustarini D; Cavarra E; Tell G; Lungarella G; Colombo R; Rossi R; Milzani A
    Mass Spectrom Rev; 2005; 24(1):55-99. PubMed ID: 15389864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.