These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17137332)
1. Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks. Shinoda K; Sugimoto M; Yachie N; Sugiyama N; Masuda T; Robert M; Soga T; Tomita M J Proteome Res; 2006 Dec; 5(12):3312-7. PubMed ID: 17137332 [TBL] [Abstract][Full Text] [Related]
2. Informatics for peptide retention properties in proteomic LC-MS. Shinoda K; Sugimoto M; Tomita M; Ishihama Y Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome. Zhou P; Tian F; Lv F; Shang Z J Chromatogr A; 2009 Apr; 1216(15):3107-16. PubMed ID: 19232620 [TBL] [Abstract][Full Text] [Related]
5. Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach. Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O J Proteome Res; 2009 Aug; 8(8):4109-15. PubMed ID: 19492844 [TBL] [Abstract][Full Text] [Related]
6. Aligning LC peaks by converting gradient retention times to retention index of peptides in proteomic experiments. Shinoda K; Tomita M; Ishihama Y Bioinformatics; 2008 Jul; 24(14):1590-5. PubMed ID: 18492686 [TBL] [Abstract][Full Text] [Related]
7. Standardization of retention time data for AMT tag proteomics database generation. Tarasova IA; Guryca V; Pridatchenko ML; Gorshkov AV; Kieffer-Jaquinod S; Evreinov VV; Masselon CD; Gorshkov MV J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Feb; 877(4):433-40. PubMed ID: 19144581 [TBL] [Abstract][Full Text] [Related]
8. Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. Fatemi MH; Abraham MH; Poole CF J Chromatogr A; 2008 May; 1190(1-2):241-52. PubMed ID: 18395736 [TBL] [Abstract][Full Text] [Related]
9. Chemical cleavage-assisted tryptic digestion for membrane proteome analysis. Iwasaki M; Masuda T; Tomita M; Ishihama Y J Proteome Res; 2009 Jun; 8(6):3169-75. PubMed ID: 19348461 [TBL] [Abstract][Full Text] [Related]
10. Multiple linear regression and artificial neural network retention prediction models for ginsenosides on a polyamine-bonded stationary phase in hydrophilic interaction chromatography. Quiming NS; Denola NL; Saito Y; Jinno K J Sep Sci; 2008 May; 31(9):1550-63. PubMed ID: 18435511 [TBL] [Abstract][Full Text] [Related]
11. Optimisation of high performance liquid chromatography separation of neuroprotective peptides. Fractional experimental designs combined with artificial neural networks. Novotná K; Havlis J; Havel J J Chromatogr A; 2005 Nov; 1096(1-2):50-7. PubMed ID: 16301069 [TBL] [Abstract][Full Text] [Related]
12. CoSMoS: Conserved Sequence Motif Search in the proteome. Liu XI; Korde N; Jakob U; Leichert LI BMC Bioinformatics; 2006 Jan; 7():37. PubMed ID: 16433915 [TBL] [Abstract][Full Text] [Related]
13. Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks. Sugimoto M; Kikuchi S; Arita M; Soga T; Nishioka T; Tomita M Anal Chem; 2005 Jan; 77(1):78-84. PubMed ID: 15623281 [TBL] [Abstract][Full Text] [Related]
14. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Dwivedi RC; Spicer V; Harder M; Antonovici M; Ens W; Standing KG; Wilkins JA; Krokhin OV Anal Chem; 2008 Sep; 80(18):7036-42. PubMed ID: 18686972 [TBL] [Abstract][Full Text] [Related]
15. Predicting liquid chromatographic retention times of peptides from the Drosophila melanogaster proteome by machine learning approaches. Tian F; Yang L; Lv F; Zhou P Anal Chim Acta; 2009 Jun; 644(1-2):10-6. PubMed ID: 19463555 [TBL] [Abstract][Full Text] [Related]
16. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis. Wang N; Li L Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145 [TBL] [Abstract][Full Text] [Related]
17. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli. Babu M; Butland G; Pogoutse O; Li J; Greenblatt JF; Emili A Methods Mol Biol; 2009; 564():373-400. PubMed ID: 19544035 [TBL] [Abstract][Full Text] [Related]
18. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices. Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176 [TBL] [Abstract][Full Text] [Related]
19. Analysis of mass spectrometry data in proteomics. Matthiesen R; Jensen ON Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299 [TBL] [Abstract][Full Text] [Related]
20. Two-dimensional reversed-phase x ion-pair reversed-phase HPLC: an alternative approach to high-resolution peptide separation for shotgun proteome analysis. Delmotte N; Lasaosa M; Tholey A; Heinzle E; Huber CG J Proteome Res; 2007 Nov; 6(11):4363-73. PubMed ID: 17924683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]