These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17137346)

  • 1. A new functional, chemical proteomics technology to identify purine nucleotide binding sites in complex proteomes.
    Hanoulle X; Van Damme J; Staes A; Martens L; Goethals M; Vandekerckhove J; Gevaert K
    J Proteome Res; 2006 Dec; 5(12):3438-45. PubMed ID: 17137346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity profiling of platelets by chemical proteomics.
    Wong JW; McRedmond JP; Cagney G
    Proteomics; 2009 Jan; 9(1):40-50. PubMed ID: 19053083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-plasmon-resonance-based chemical proteomics: efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography-tandem mass spectrometry.
    Visser NF; Scholten A; van den Heuvel RH; Heck AJ
    Chembiochem; 2007 Feb; 8(3):298-305. PubMed ID: 17206730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry.
    Shiio Y; Aebersold R
    Nat Protoc; 2006; 1(1):139-45. PubMed ID: 17406225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses.
    Gevaert K; Impens F; Van Damme P; Ghesquière B; Hanoulle X; Vandekerckhove J
    FEBS J; 2007 Dec; 274(24):6277-89. PubMed ID: 18021238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy for surveying the proteome using affinity proteomics and mass spectrometry.
    Wingren C; James P; Borrebaeck CA
    Proteomics; 2009 Mar; 9(6):1511-7. PubMed ID: 19235165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.
    Vester D; Rapp E; Gade D; Genzel Y; Reichl U
    Proteomics; 2009 Jun; 9(12):3316-27. PubMed ID: 19504497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing proteomes with benzophenone photoprobes.
    Kawamura A; Mihai DM
    Methods Mol Biol; 2012; 803():65-75. PubMed ID: 22065219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteome analysis of cisplatin-induced apoptotic Jurkat T cells by stable isotope labeling with amino acids in cell culture, SDS-PAGE, and LC-MALDI-TOF/TOF MS.
    Schmidt F; Hustoft HK; Strozynski M; Dimmler C; Rudel T; Thiede B
    Electrophoresis; 2007 Dec; 28(23):4359-68. PubMed ID: 17987630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide Identification of HtrA2/Omi Substrates.
    Vande Walle L; Van Damme P; Lamkanfi M; Saelens X; Vandekerckhove J; Gevaert K; Vandenabeele P
    J Proteome Res; 2007 Mar; 6(3):1006-15. PubMed ID: 17266347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoplasmic proteome and secretome profiles of differently stimulated human dendritic cells.
    Gundacker NC; Haudek VJ; Wimmer H; Slany A; Griss J; Bochkov V; Zielinski C; Wagner O; Stöckl J; Gerner C
    J Proteome Res; 2009 Jun; 8(6):2799-811. PubMed ID: 19351150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional proteomics: protein-protein interactions in vivo.
    Monti M; Cozzolino M; Cozzolino F; Tedesco R; Pucci P
    Ital J Biochem; 2007 Dec; 56(4):310-4. PubMed ID: 19192633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical proteomics from a nuclear magnetic resonance spectroscopy perspective.
    Sem DS
    Expert Rev Proteomics; 2004 Aug; 1(2):165-78. PubMed ID: 15966811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of detergent-insoluble and whole cell lysate fractions of resting neutrophils using high-resolution mass spectrometry.
    Tomazella GG; daSilva I; Thomé CH; Greene LJ; Koehler CJ; Thiede B; Wiker HG; de Souza GA
    J Proteome Res; 2010 Apr; 9(4):2030-6. PubMed ID: 20158270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative temporal proteomics of a response regulator (SO2426)-deficient strain and wild-type Shewanella oneidensis MR-1 during chromate transformation.
    Chourey K; Thompson MR; Shah M; Zhang B; Verberkmoes NC; Thompson DK; Hettich RL
    J Proteome Res; 2009 Jan; 8(1):59-71. PubMed ID: 19118451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of proteins binding to decursinol by chemical proteomics.
    Kang HJ; Yoon TS; Jeong DG; Kim Y; Chung JW; Ha JS; Park SS; Ryu SE; Kim S; Bae KH; Chung SJ
    J Microbiol Biotechnol; 2008 Aug; 18(8):1427-30. PubMed ID: 18756104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteome mapping of nitrotyrosines.
    Bigelow DJ; Qian WJ
    Methods Enzymol; 2008; 440():191-205. PubMed ID: 18423218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interrogation of the kinome using nucleotide acyl phosphates.
    Patricelli MP; Szardenings AK; Liyanage M; Nomanbhoy TK; Wu M; Weissig H; Aban A; Chun D; Tanner S; Kozarich JW
    Biochemistry; 2007 Jan; 46(2):350-8. PubMed ID: 17209545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and mapping of protein-protein interactions by a combination of cross-linking, cleavage, and proteomics.
    Trakselis MA; Alley SC; Ishmael FT
    Bioconjug Chem; 2005; 16(4):741-50. PubMed ID: 16029014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.