These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An understanding of the electrophilic/nucleophilic behavior of electro-deficient 2,3-disubstituted 1,3-butadienes in polar diels-alder reactions. A density functional theory study. Domingo LR; Chamorro E; Pérez P J Phys Chem A; 2008 May; 112(17):4046-53. PubMed ID: 18370427 [TBL] [Abstract][Full Text] [Related]
3. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. Domingo LR; Chamorro E; Pérez P J Org Chem; 2008 Jun; 73(12):4615-24. PubMed ID: 18484771 [TBL] [Abstract][Full Text] [Related]
4. Understanding the nature of the molecular mechanisms associated with the competitive Lewis acid catalyzed [4+2] and [4+3] cycloadditions between arylidenoxazolone systems and cyclopentadiene: a DFT analysis. Arnó M; Picher MT; Domingo LR; Andrés J Chemistry; 2004 Oct; 10(19):4742-9. PubMed ID: 15372655 [TBL] [Abstract][Full Text] [Related]
5. Toward an understanding of the unexpected regioselective hetero-Diels-Alder reactions of asymmetric tetrazines with electron-rich ethylenes: a DFT study. Domingo LR; Picher MT; Sáez JA J Org Chem; 2009 Apr; 74(7):2726-35. PubMed ID: 19260699 [TBL] [Abstract][Full Text] [Related]
6. Reaction mechanism and chemoselectivity of intermolecular cycloaddition reactions between phenyl-substituted cyclopropenone ketal and methyl vinyl ketone. Qiao Y; Chu TS J Org Chem; 2011 May; 76(9):3086-95. PubMed ID: 21438618 [TBL] [Abstract][Full Text] [Related]
7. A cornucopia of cycloadducts: theoretical predictions of the mechanisms and products of the reactions of cyclopentadiene with cycloheptatriene. Leach AG; Goldstein E; Houk KN J Am Chem Soc; 2003 Jul; 125(27):8330-9. PubMed ID: 12837105 [TBL] [Abstract][Full Text] [Related]
8. Lewis acid-catalyzed [4 + 3] cycloaddition of 2-(trimethyl silyloxy)acrolein with furan. Insight on the nature of the mechanism from a DFT analysis. Sáez JA; Arnó M; Domingo LR Org Lett; 2003 Oct; 5(22):4117-20. PubMed ID: 14572263 [TBL] [Abstract][Full Text] [Related]
9. Novel 1,3-dipolar cycloadditions of dinitraminic acid: implications for the chemical stability of ammonium dinitramide. Rahm M; Brinck T J Phys Chem A; 2008 Mar; 112(11):2456-63. PubMed ID: 18278886 [TBL] [Abstract][Full Text] [Related]
10. Understanding the participation of quadricyclane as nucleophile in polar [2sigma + 2sigma + 2pi] cycloadditions toward electrophilic pi molecules. Domingo LR; Saéz JA; Zaragozá RJ; Arnó M J Org Chem; 2008 Nov; 73(22):8791-9. PubMed ID: 18942791 [TBL] [Abstract][Full Text] [Related]
11. Understanding the mechanism of non-polar Diels-Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Domingo LR; Chamorro E; Pérez P Org Biomol Chem; 2010 Dec; 8(24):5495-504. PubMed ID: 20967366 [TBL] [Abstract][Full Text] [Related]
12. Regioselectivity, stereoselectivity, and molecular mechanism of [3 + 2] cycloaddition reactions between 2-methyl-1-nitroprop-1-ene and (Z)-C-aryl-N-phenylnitrones: a DFT computational study. Dresler E; Kącka-Zych A; Kwiatkowska M; Jasiński R J Mol Model; 2018 Oct; 24(11):329. PubMed ID: 30377806 [TBL] [Abstract][Full Text] [Related]
13. Understanding the molecular mechanism of the 1,3-dipolar cycloaddition between fulminic acid and acetylene in terms of the electron localization function and catastrophe theory. Polo V; Andres J; Castillo R; Berski S; Silvi B Chemistry; 2004 Oct; 10(20):5165-72. PubMed ID: 15372667 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of reactant activation in 1,3-dipolar cycloadditions of cyclic nitrones to free and Pt-bound nitriles. Kuznetsov ML; Kukushkin VY J Org Chem; 2006 Jan; 71(2):582-92. PubMed ID: 16408968 [TBL] [Abstract][Full Text] [Related]
15. A combined experimental and theoretical study of the polar [3 + 2] cycloaddition of electrophilically activated carbonyl ylides with aldehydes and imines. Bentabed-Ababsa G; Derdour A; Roisnel T; Sáez JA; Pérez P; Chamorro E; Domingo LR; Mongin F J Org Chem; 2009 Mar; 74(5):2120-33. PubMed ID: 19199802 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic aspects of the formation of aldehydes and nitriles in photosensitized reactions of aldoxime ethers. de Lijser HJ; Rangel NA; Tetalman MA; Tsai CK J Org Chem; 2007 May; 72(11):4126-34. PubMed ID: 17477578 [TBL] [Abstract][Full Text] [Related]
17. Rearrangement of 1,3-dipolar cycloadducts derived from bis(phenylazo)stilbene: a DFT level mechanistic investigation. Suresh CH; Ramaiah D; George MV J Org Chem; 2007 Jan; 72(2):367-75. PubMed ID: 17221951 [TBL] [Abstract][Full Text] [Related]
18. DFT-HSAB prediction of regioselectivity in 1,3-dipolar cycloadditions: behavior of (4-substituted)benzonitrile oxides towards methyl propiolate. Ponti A; Molteni G Chemistry; 2006 Jan; 12(4):1156-61. PubMed ID: 16259036 [TBL] [Abstract][Full Text] [Related]
19. The Diels-Alder reaction of 4,6-dinitrobenzofuroxan with 1-trimethylsilyloxybuta-1,3-diene: a case example of a stepwise cycloaddition. Lakhdar S; Terrier F; Vichard D; Berionni G; El Guesmi N; Goumont R; Boubaker T Chemistry; 2010 May; 16(19):5681-90. PubMed ID: 20376824 [TBL] [Abstract][Full Text] [Related]
20. Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates. Darù A; Roca-López D; Tejero T; Merino P J Org Chem; 2016 Jan; 81(2):673-80. PubMed ID: 26682934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]