BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 17137509)

  • 1. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves.
    Berendzen KW; Stüber K; Harter K; Wanke D
    BMC Bioinformatics; 2006 Nov; 7():522. PubMed ID: 17137509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PRECISE: software for prediction of cis-acting regulatory elements.
    Trindade LM; van Berloo R; Fiers M; Visser RG
    J Hered; 2005; 96(5):618-22. PubMed ID: 16135709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis.
    Geisler M; Kleczkowski LA; Karpinski S
    Plant J; 2006 Feb; 45(3):384-98. PubMed ID: 16412085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals.
    Vanet A; Marsan L; Labigne A; Sagot MF
    J Mol Biol; 2000 Mar; 297(2):335-53. PubMed ID: 10715205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of motif variants and positional bias of the cyclic-AMP response element.
    Smith B; Fang H; Pan Y; Walker PR; Famili AF; Sikorska M
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S15. PubMed ID: 17288573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny based discovery of regulatory elements.
    Gertz J; Fay JC; Cohen BA
    BMC Bioinformatics; 2006 May; 7():266. PubMed ID: 16716228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae.
    Hughes JD; Estep PW; Tavazoie S; Church GM
    J Mol Biol; 2000 Mar; 296(5):1205-14. PubMed ID: 10698627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of putative cis-regulatory elements in Cryptosporidium parvum by de novo pattern finding.
    Mullapudi N; Lancto CA; Abrahamsen MS; Kissinger JC
    BMC Genomics; 2007 Jan; 8():13. PubMed ID: 17212834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: application to Arabidopsis.
    Shamloo-Dashtpagerdi R; Razi H; Aliakbari M; Lindlöf A; Ebrahimi M; Ebrahimie E
    J Theor Biol; 2015 Jan; 364():364-76. PubMed ID: 25303887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome wide analysis of Arabidopsis core promoters.
    Molina C; Grotewold E
    BMC Genomics; 2005 Feb; 6():25. PubMed ID: 15733318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species.
    Verma A; Halder K; Halder R; Yadav VK; Rawal P; Thakur RK; Mohd F; Sharma A; Chowdhury S
    J Med Chem; 2008 Sep; 51(18):5641-9. PubMed ID: 18767830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More robust detection of motifs in coexpressed genes by using phylogenetic information.
    Monsieurs P; Thijs G; Fadda AA; De Keersmaecker SC; Vanderleyden J; De Moor B; Marchal K
    BMC Bioinformatics; 2006 Mar; 7():160. PubMed ID: 16549017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction.
    Ohler U
    Nucleic Acids Res; 2006; 34(20):5943-50. PubMed ID: 17068082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide variation of regulatory motifs may lead to distinct expression patterns.
    Segal L; Lapidot M; Solan Z; Ruppin E; Pilpel Y; Horn D
    Bioinformatics; 2007 Jul; 23(13):i440-9. PubMed ID: 17646329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motif discovery and motif finding from genome-mapped DNase footprint data.
    Kulakovskiy IV; Favorov AV; Makeev VJ
    Bioinformatics; 2009 Sep; 25(18):2318-25. PubMed ID: 19605419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPACER: identification of cis-regulatory elements with non-contiguous critical residues.
    Chakravarty A; Carlson JM; Khetani RS; DeZiel CE; Gross RH
    Bioinformatics; 2007 Apr; 23(8):1029-31. PubMed ID: 17470480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor binding site identification using the self-organizing map.
    Mahony S; Hendrix D; Golden A; Smith TJ; Rokhsar DS
    Bioinformatics; 2005 May; 21(9):1807-14. PubMed ID: 15647296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules.
    Turatsinze JV; Thomas-Chollier M; Defrance M; van Helden J
    Nat Protoc; 2008; 3(10):1578-88. PubMed ID: 18802439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.