BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17137637)

  • 1. Pros and cons of treating murine myasthenia gravis with anti-C1q antibody.
    Tüzün E; Li J; Saini SS; Yang H; Christadoss P
    J Neuroimmunol; 2007 Jan; 182(1-2):167-76. PubMed ID: 17137637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Ghosh S; Rowin J; Meriggioli MN; Christadoss P
    Neuromuscul Disord; 2006 Feb; 16(2):137-43. PubMed ID: 16427283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis.
    Christadoss P; Tüzün E; Li J; Saini SS; Yang H
    Ann N Y Acad Sci; 2008; 1132():210-9. PubMed ID: 18567870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis.
    Tüzün E; Saini SS; Yang H; Alagappan D; Higgs S; Christadoss P
    J Neuroimmunol; 2006 May; 174(1-2):157-67. PubMed ID: 16527362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulating immune complexes augment severity of antibody-mediated myasthenia gravis in hypogammaglobulinemic RIIIS/J mice.
    Tüzün E; Scott BG; Yang H; Wu B; Goluszko E; Guigneaux M; Higgs S; Christadoss P
    J Immunol; 2004 May; 172(9):5743-52. PubMed ID: 15100321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting classical complement pathway to treat complement mediated autoimmune diseases.
    Tüzün E; Li J; Saini SS; Yang H; Christadoss P
    Adv Exp Med Biol; 2008; 632():265-72. PubMed ID: 19025128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory IgG receptor FcgammaRIIB fails to inhibit experimental autoimmune myasthenia gravis pathogenesis.
    Li J; Tüzün E; Wu XR; Qi HB; Allman W; Saini SS; Christadoss P
    J Neuroimmunol; 2008 Feb; 194(1-2):44-53. PubMed ID: 18207575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High interleukin-10 production is associated with anti-acetylcholine receptor antibody production and treatment response in juvenile myasthenia gravis.
    Yapici Z; Tüzün E; Altunayoğlu V; Erdoğan A; Eraksoy M
    Int J Neurosci; 2007 Nov; 117(11):1505-12. PubMed ID: 17917921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the IL-1beta gene diminishes acetylcholine receptor-induced immune responses in a murine model of myasthenia gravis.
    Huang D; Shi FD; Giscombe R; Zhou Y; Ljunggren HG; Lefvert AK
    Eur J Immunol; 2001 Jan; 31(1):225-32. PubMed ID: 11265638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.
    Tüzün E; Scott BG; Goluszko E; Higgs S; Christadoss P
    J Immunol; 2003 Oct; 171(7):3847-54. PubMed ID: 14500686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of B-cells in experimental myasthenia gravis in mice.
    Wang HB; Li H; He B; Bakheit M; Levi M; Wahren B; Berglöf A; Sandstedt K; Link H; Shi FD
    Biomed Pharmacother; 1999 Jun; 53(5-6):227-33. PubMed ID: 10424244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mannose-binding lectin pathway is not involved in myasthenia gravis pathogenesis.
    Li J; Qi H; Tüzün E; Allman W; Yilmaz V; Saini SS; Deymeer F; Saruhan-Direskeneli G; Christadoss P
    J Neuroimmunol; 2009 Mar; 208(1-2):40-5. PubMed ID: 19193448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental myasthenia gravis is inhibited by receptor-antireceptor complexes.
    Barkas T; Simpson JA
    J Clin Lab Immunol; 1982 Apr; 7(3):223-7. PubMed ID: 7097749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The mechanism of prophylactic effects of nasal tolerance with a dual analogue on experimental autoimmune myasthenia gravis in young mice].
    Liu SL; Huang Z
    Zhongguo Dang Dai Er Ke Za Zhi; 2008 Apr; 10(2):191-4. PubMed ID: 18433545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production.
    Deng C; Goluszko E; Tüzün E; Yang H; Christadoss P
    J Immunol; 2002 Jul; 169(2):1077-83. PubMed ID: 12097416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4+ T and B cells cooperate in the immunoregulation of Experimental Autoimmune Myasthenia Gravis.
    Milani M; Ostlie N; Wu H; Wang W; Conti-Fine BM
    J Neuroimmunol; 2006 Oct; 179(1-2):152-62. PubMed ID: 16945426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.