These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17137637)

  • 1. Pros and cons of treating murine myasthenia gravis with anti-C1q antibody.
    Tüzün E; Li J; Saini SS; Yang H; Christadoss P
    J Neuroimmunol; 2007 Jan; 182(1-2):167-76. PubMed ID: 17137637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Ghosh S; Rowin J; Meriggioli MN; Christadoss P
    Neuromuscul Disord; 2006 Feb; 16(2):137-43. PubMed ID: 16427283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis.
    Christadoss P; Tüzün E; Li J; Saini SS; Yang H
    Ann N Y Acad Sci; 2008; 1132():210-9. PubMed ID: 18567870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis.
    Tüzün E; Saini SS; Yang H; Alagappan D; Higgs S; Christadoss P
    J Neuroimmunol; 2006 May; 174(1-2):157-67. PubMed ID: 16527362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulating immune complexes augment severity of antibody-mediated myasthenia gravis in hypogammaglobulinemic RIIIS/J mice.
    Tüzün E; Scott BG; Yang H; Wu B; Goluszko E; Guigneaux M; Higgs S; Christadoss P
    J Immunol; 2004 May; 172(9):5743-52. PubMed ID: 15100321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting classical complement pathway to treat complement mediated autoimmune diseases.
    Tüzün E; Li J; Saini SS; Yang H; Christadoss P
    Adv Exp Med Biol; 2008; 632():265-72. PubMed ID: 19025128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory IgG receptor FcgammaRIIB fails to inhibit experimental autoimmune myasthenia gravis pathogenesis.
    Li J; Tüzün E; Wu XR; Qi HB; Allman W; Saini SS; Christadoss P
    J Neuroimmunol; 2008 Feb; 194(1-2):44-53. PubMed ID: 18207575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High interleukin-10 production is associated with anti-acetylcholine receptor antibody production and treatment response in juvenile myasthenia gravis.
    Yapici Z; Tüzün E; Altunayoğlu V; Erdoğan A; Eraksoy M
    Int J Neurosci; 2007 Nov; 117(11):1505-12. PubMed ID: 17917921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the IL-1beta gene diminishes acetylcholine receptor-induced immune responses in a murine model of myasthenia gravis.
    Huang D; Shi FD; Giscombe R; Zhou Y; Ljunggren HG; Lefvert AK
    Eur J Immunol; 2001 Jan; 31(1):225-32. PubMed ID: 11265638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.
    Tüzün E; Scott BG; Goluszko E; Higgs S; Christadoss P
    J Immunol; 2003 Oct; 171(7):3847-54. PubMed ID: 14500686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of B-cells in experimental myasthenia gravis in mice.
    Wang HB; Li H; He B; Bakheit M; Levi M; Wahren B; Berglöf A; Sandstedt K; Link H; Shi FD
    Biomed Pharmacother; 1999 Jun; 53(5-6):227-33. PubMed ID: 10424244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mannose-binding lectin pathway is not involved in myasthenia gravis pathogenesis.
    Li J; Qi H; Tüzün E; Allman W; Yilmaz V; Saini SS; Deymeer F; Saruhan-Direskeneli G; Christadoss P
    J Neuroimmunol; 2009 Mar; 208(1-2):40-5. PubMed ID: 19193448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental myasthenia gravis is inhibited by receptor-antireceptor complexes.
    Barkas T; Simpson JA
    J Clin Lab Immunol; 1982 Apr; 7(3):223-7. PubMed ID: 7097749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The mechanism of prophylactic effects of nasal tolerance with a dual analogue on experimental autoimmune myasthenia gravis in young mice].
    Liu SL; Huang Z
    Zhongguo Dang Dai Er Ke Za Zhi; 2008 Apr; 10(2):191-4. PubMed ID: 18433545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production.
    Deng C; Goluszko E; Tüzün E; Yang H; Christadoss P
    J Immunol; 2002 Jul; 169(2):1077-83. PubMed ID: 12097416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4+ T and B cells cooperate in the immunoregulation of Experimental Autoimmune Myasthenia Gravis.
    Milani M; Ostlie N; Wu H; Wang W; Conti-Fine BM
    J Neuroimmunol; 2006 Oct; 179(1-2):152-62. PubMed ID: 16945426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.