These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 1713789)
1. Negative staining and genesis of D-periodicity in native collagen fibrils. Ortolani F; Raspanti M; Marchini M Eur J Basic Appl Histochem; 1991; 35(1):45-60. PubMed ID: 1713789 [TBL] [Abstract][Full Text] [Related]
2. Correlations between amino acid hydrophobicity scales and stain exclusion capacity of type 1 collagen fibrils. Ortolani F; Raspanti M; Marchini M J Electron Microsc (Tokyo); 1994 Feb; 43(1):32-8. PubMed ID: 11407414 [TBL] [Abstract][Full Text] [Related]
3. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains. Ortolani F; Giordano M; Marchini M Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330 [TBL] [Abstract][Full Text] [Related]
4. Cartilage type II collagen fibrils show distinctive negative-staining band patterns differences between type II and type I unfixed or glutaraldehyde-fixed collagen fibrils. Ortolani F; Marchini M J Electron Microsc (Tokyo); 1995 Oct; 44(5):365-75. PubMed ID: 8568450 [TBL] [Abstract][Full Text] [Related]
5. Collagen-glutaraldehyde interaction as revealed by the D-banding of negatively stained fibrils and computer-drawn band patterns. Marchini M; Ortolani F; Raspanti M Eur J Histochem; 1993; 37(4):363-73. PubMed ID: 7510543 [TBL] [Abstract][Full Text] [Related]
6. Axial structure of the heterotypic collagen fibrils of vitreous humour and cartilage. Bos KJ; Holmes DF; Kadler KE; McLeod D; Morris NP; Bishop PN J Mol Biol; 2001 Mar; 306(5):1011-22. PubMed ID: 11237615 [TBL] [Abstract][Full Text] [Related]
7. "GA-banding": a new terminology and a study of the glutaraldehyde-induced band pattern of type I collagen fibrils. Ortolani F; Marchini M Boll Soc Ital Biol Sper; 1993 Jan; 69(1):49-55. PubMed ID: 8329191 [TBL] [Abstract][Full Text] [Related]
8. Glutaraldehyde-induced D-band pattern of type II collagen fibrils as revealed by negative staining. Ortolani F; Marchini M Boll Soc Ital Biol Sper; 1993 Feb; 69(2):107-13. PubMed ID: 8129883 [TBL] [Abstract][Full Text] [Related]
9. [Influence of hydrophobicity on the negative staining of collagen fibrils]. Marchini M; Raspanti M; Ortolani F Boll Soc Ital Biol Sper; 1988 Aug; 64(8):755-62. PubMed ID: 2463846 [No Abstract] [Full Text] [Related]
10. Correlation between amino acid composition and ultrastructural features of type I and type II native collagen fibrils. Ortolani F; Marchini M Boll Soc Ital Biol Sper; 1993 Feb; 69(2):99-106. PubMed ID: 8129891 [TBL] [Abstract][Full Text] [Related]
11. Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling. Harris JR; Reiber A Micron; 2007; 38(5):513-21. PubMed ID: 17045806 [TBL] [Abstract][Full Text] [Related]
12. Fibrous long spacing type collagen fibrils have a hierarchical internal structure. Wen CK; Goh MC Proteins; 2006 Jul; 64(1):227-33. PubMed ID: 16609970 [TBL] [Abstract][Full Text] [Related]
13. Structural investigations on native collagen type I fibrils using AFM. Strasser S; Zink A; Janko M; Heckl WM; Thalhammer S Biochem Biophys Res Commun; 2007 Mar; 354(1):27-32. PubMed ID: 17210119 [TBL] [Abstract][Full Text] [Related]
14. Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis. Malone JP; George A; Veis A Proteins; 2004 Feb; 54(2):206-15. PubMed ID: 14696182 [TBL] [Abstract][Full Text] [Related]
15. [Existence of a superposition for negative and positive staining of collagen fibrils]. Ortolani F; Raspanti M; Marchini M Boll Soc Ital Biol Sper; 1988 Oct; 64(10):915-22. PubMed ID: 2478166 [No Abstract] [Full Text] [Related]
16. Heterotrimeric type I collagen C-telopeptide conformation as docked to its helix receptor. Malone JP; Veis A Biochemistry; 2004 Dec; 43(49):15358-66. PubMed ID: 15581348 [TBL] [Abstract][Full Text] [Related]
17. Cyanogen bromide peptides of the fibrillar collagens I, III, and V and their mass spectrometric characterization: detection of linear peptides, peptide glycosylation, and cross-linking peptides involved in formation of homo- and heterotypic fibrils. Henkel W; Dreisewerd K J Proteome Res; 2007 Nov; 6(11):4269-89. PubMed ID: 17939700 [TBL] [Abstract][Full Text] [Related]
18. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. Cisneros DA; Hung C; Franz CM; Muller DJ J Struct Biol; 2006 Jun; 154(3):232-45. PubMed ID: 16600632 [TBL] [Abstract][Full Text] [Related]
19. Molecular packing of type I collagen in tendon. Wess TJ; Hammersley AP; Wess L; Miller A J Mol Biol; 1998 Jan; 275(2):255-67. PubMed ID: 9466908 [TBL] [Abstract][Full Text] [Related]
20. Conformational analysis of the type II and type III collagen alpha-1 chain N-telopeptides by 1H-NMR spectroscopy and restrained molecular mechanics calculations. Otter A; Scott PG; Kotovych G Biopolymers; 1993 Sep; 33(9):1443-59. PubMed ID: 8400034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]