These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 17138580)

  • 1. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2007 Feb; 99(2):255-63. PubMed ID: 17138580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2006 Jul; 98(1):267-75. PubMed ID: 16735404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple method to estimate photosynthetic radiation use efficiency of canopies.
    Rosati A; Metcalf SG; Lampinen BD
    Ann Bot; 2004 May; 93(5):567-74. PubMed ID: 15044212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.
    Rosati A; Dejong TM
    Ann Bot; 2003 Jun; 91(7):869-77. PubMed ID: 12770844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency.
    Hikosaka K
    Am Nat; 2003 Aug; 162(2):149-64. PubMed ID: 12858260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal.
    Brodersen CR; Vogelmann TC; Williams WE; Gorton HL
    Plant Cell Environ; 2008 Jan; 31(1):159-64. PubMed ID: 18028265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis and resource distribution through plant canopies.
    Niinemets U
    Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the sensitivity of absorbed light and incident light profile to various canopy architecture and stand conditions.
    Kim HS; Palmroth S; Thérézien M; Stenberg P; Oren R
    Tree Physiol; 2011 Jan; 31(1):30-47. PubMed ID: 21389000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy.
    Trouwborst G; Oosterkamp J; Hogewoning SW; Harbinson J; van Ieperen W
    Physiol Plant; 2010 Mar; 138(3):289-300. PubMed ID: 20051030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints.
    Niinemets U; Valladares F
    Plant Biol (Stuttg); 2004 May; 6(3):254-68. PubMed ID: 15143434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.
    Diaz-Espejo A; Nicolás E; Fernández JE
    Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of the ratio between the photosynthesis parameters p(ml)and v(cmax)for scaling up photosynthesis of C(3)Plants from leaves to canopies: A critical examination of different modelling approaches.
    Wohlfahrt G; Bahn M; Cernusca A
    J Theor Biol; 1999 Sep; 200(2):163-81. PubMed ID: 10504283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.
    Mänd P; Hallik L; Peñuelas J; Kull O
    Tree Physiol; 2013 Feb; 33(2):202-10. PubMed ID: 23185067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond trees.
    Nortes PA; Gonzalez-Real MM; Egea G; Baille A
    Tree Physiol; 2009 Mar; 29(3):375-88. PubMed ID: 19203958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracanopy lighting reduces electrical energy utilization by closed cowpea stands.
    Frantz JM; Joly RJ; Mitchell CA
    Life Support Biosph Sci; 2001; 7(4):283-90. PubMed ID: 11676456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why does leaf nitrogen decline within tree canopies less rapidly than light? An explanation from optimization subject to a lower bound on leaf mass per area.
    Dewar RC; Tarvainen L; Parker K; Wallin G; McMurtrie RE
    Tree Physiol; 2012 May; 32(5):520-34. PubMed ID: 22619074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.
    Peltoniemi MS; Duursma RA; Medlyn BE
    Tree Physiol; 2012 May; 32(5):510-9. PubMed ID: 22491524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light.
    Hikosaka K
    Plant Cell Environ; 2014 Sep; 37(9):2077-85. PubMed ID: 24506525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees.
    Rosati A; Esparza G; DeJong TM; Pearcy RW
    Tree Physiol; 1999 Mar; 19(3):173-180. PubMed ID: 12651580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis.
    Richter P; Helbling W; Streb C; Häder DP
    Photochem Photobiol; 2007; 83(4):818-23. PubMed ID: 17645652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.