BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17138724)

  • 1. Thermogenic side effects to migratory predisposition in shorebirds.
    Vézina F; Jalvingh KM; Dekinga A; Piersma T
    Am J Physiol Regul Integr Comp Physiol; 2007 Mar; 292(3):R1287-97. PubMed ID: 17138724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shorebirds' seasonal adjustments in thermogenic capacity are reflected by changes in body mass: how preprogrammed and instantaneous acclimation work together.
    Vézina F; Dekinga A; Piersma T
    Integr Comp Biol; 2011 Sep; 51(3):394-408. PubMed ID: 21700573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size.
    Vézina F; Jalvingh KM; Dekinga A; Piersma T
    J Exp Biol; 2006 Aug; 209(Pt 16):3141-54. PubMed ID: 16888062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in tissue aerobic capacity may play a role in premigratory fattening in shorebirds.
    Selman C; Evans PR
    Biol Lett; 2005 Mar; 1(1):101-4. PubMed ID: 17148139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large muscles are beneficial but not required for improving thermogenic capacity in small birds.
    Milbergue MS; Blier PU; Vézina F
    Sci Rep; 2018 Sep; 8(1):14009. PubMed ID: 30228279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variation in body composition in an Afrotropical passerine bird: increases in pectoral muscle mass are, unexpectedly, associated with lower thermogenic capacity.
    Noakes MJ; Karasov WH; McKechnie AE
    J Comp Physiol B; 2020 May; 190(3):371-380. PubMed ID: 32189062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performing animal: causes and consequences of body remodeling and metabolic adjustments in red knots facing contrasting thermal environments.
    Vézina F; Gerson AR; Guglielmo CG; Piersma T
    Am J Physiol Regul Integr Comp Physiol; 2017 Aug; 313(2):R120-R131. PubMed ID: 28438763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wintering Snow Buntings Elevate Cold Hardiness to Extreme Levels but Show No Changes in Maintenance Costs.
    Le Pogam A; Love OP; Régimbald L; Dubois K; Hallot F; Milbergue M; Petit M; O'Connor RS; Vézina F
    Physiol Biochem Zool; 2020; 93(6):417-433. PubMed ID: 33048603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity.
    Petit M; Vézina F; Piersma T
    J Comp Physiol B; 2010 Aug; 180(6):847-56. PubMed ID: 20339851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How salinity and temperature combine to affect physiological state and performance in red knots with contrasting non-breeding environments.
    Gutiérrez JS; Soriano-Redondo A; Dekinga A; Villegas A; Masero JA; Piersma T
    Oecologia; 2015 Aug; 178(4):1077-91. PubMed ID: 25851406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupling Basal and Summit Metabolic Rates in White-Throated Sparrows: Digestive Demand Drives Maintenance Costs, but Changes in Muscle Mass Are Not Needed to Improve Thermogenic Capacity.
    Barceló G; Love OP; Vézina F
    Physiol Biochem Zool; 2017; 90(2):153-165. PubMed ID: 28277963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotype manipulations confirm the role of pectoral muscles and haematocrit in avian maximal thermogenic capacity.
    Petit M; Vézina F
    J Exp Biol; 2014 Mar; 217(Pt 6):824-30. PubMed ID: 24198261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic flexibility of thermogenesis in the hwamei (Garrulax canorus): responses to cold acclimation.
    Zhou LM; Xia SS; Chen Q; Wang RM; Zheng WH; Liu JS
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R330-6. PubMed ID: 26661097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird.
    Vézina F; Gustowska A; Jalvingh KM; Chastel O; Piersma T
    Physiol Biochem Zool; 2009; 82(2):129-42. PubMed ID: 19199554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary design of a flexible, seasonally migratory, avian phenotype: why trade gizzard mass against pectoral muscle mass?
    Mathot KJ; Kok EMA; Burant JB; Dekinga A; Manche P; Saintonge D; Piersma T
    Proc Biol Sci; 2019 May; 286(1903):20190518. PubMed ID: 31113330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal and maximal metabolic rates differ in their response to rapid temperature change among avian species.
    Dubois K; Hallot F; Vézina F
    J Comp Physiol B; 2016 Oct; 186(7):919-35. PubMed ID: 27233918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus).
    Van Sant MJ; Hammond KA
    Physiol Biochem Zool; 2008; 81(5):605-11. PubMed ID: 18729765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does mitochondrial function relate to thermogenic capacity and basal metabolic rate in small birds?
    Milbergue MS; Vézina F; Desrosiers V; Blier PU
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35762381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obligatory homeothermy of mesic habitat-adapted African striped mice, Rhabdomys pumilio, is governed by seasonal basal metabolism and year-round 'thermogenic readiness' of brown adipose tissue.
    Welman S; Jastroch M; Mzilikazi N
    J Exp Biol; 2022 Jul; 225(13):. PubMed ID: 35694963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited access to food and physiological trade-offs in a long-distance migrant shorebird. I. Energy metabolism, behavior, and body-mass regulation.
    Vézina F; Petit M; Buehler DM; Dekinga A; Piersma T
    Physiol Biochem Zool; 2009; 82(5):549-60. PubMed ID: 19663606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.