These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 17138724)
1. Thermogenic side effects to migratory predisposition in shorebirds. Vézina F; Jalvingh KM; Dekinga A; Piersma T Am J Physiol Regul Integr Comp Physiol; 2007 Mar; 292(3):R1287-97. PubMed ID: 17138724 [TBL] [Abstract][Full Text] [Related]
2. Shorebirds' seasonal adjustments in thermogenic capacity are reflected by changes in body mass: how preprogrammed and instantaneous acclimation work together. Vézina F; Dekinga A; Piersma T Integr Comp Biol; 2011 Sep; 51(3):394-408. PubMed ID: 21700573 [TBL] [Abstract][Full Text] [Related]
3. Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size. Vézina F; Jalvingh KM; Dekinga A; Piersma T J Exp Biol; 2006 Aug; 209(Pt 16):3141-54. PubMed ID: 16888062 [TBL] [Abstract][Full Text] [Related]
4. Alterations in tissue aerobic capacity may play a role in premigratory fattening in shorebirds. Selman C; Evans PR Biol Lett; 2005 Mar; 1(1):101-4. PubMed ID: 17148139 [TBL] [Abstract][Full Text] [Related]
5. Large muscles are beneficial but not required for improving thermogenic capacity in small birds. Milbergue MS; Blier PU; Vézina F Sci Rep; 2018 Sep; 8(1):14009. PubMed ID: 30228279 [TBL] [Abstract][Full Text] [Related]
6. Seasonal variation in body composition in an Afrotropical passerine bird: increases in pectoral muscle mass are, unexpectedly, associated with lower thermogenic capacity. Noakes MJ; Karasov WH; McKechnie AE J Comp Physiol B; 2020 May; 190(3):371-380. PubMed ID: 32189062 [TBL] [Abstract][Full Text] [Related]
7. The performing animal: causes and consequences of body remodeling and metabolic adjustments in red knots facing contrasting thermal environments. Vézina F; Gerson AR; Guglielmo CG; Piersma T Am J Physiol Regul Integr Comp Physiol; 2017 Aug; 313(2):R120-R131. PubMed ID: 28438763 [TBL] [Abstract][Full Text] [Related]
8. Wintering Snow Buntings Elevate Cold Hardiness to Extreme Levels but Show No Changes in Maintenance Costs. Le Pogam A; Love OP; Régimbald L; Dubois K; Hallot F; Milbergue M; Petit M; O'Connor RS; Vézina F Physiol Biochem Zool; 2020; 93(6):417-433. PubMed ID: 33048603 [TBL] [Abstract][Full Text] [Related]
9. Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity. Petit M; Vézina F; Piersma T J Comp Physiol B; 2010 Aug; 180(6):847-56. PubMed ID: 20339851 [TBL] [Abstract][Full Text] [Related]
10. How salinity and temperature combine to affect physiological state and performance in red knots with contrasting non-breeding environments. Gutiérrez JS; Soriano-Redondo A; Dekinga A; Villegas A; Masero JA; Piersma T Oecologia; 2015 Aug; 178(4):1077-91. PubMed ID: 25851406 [TBL] [Abstract][Full Text] [Related]
11. Uncoupling Basal and Summit Metabolic Rates in White-Throated Sparrows: Digestive Demand Drives Maintenance Costs, but Changes in Muscle Mass Are Not Needed to Improve Thermogenic Capacity. Barceló G; Love OP; Vézina F Physiol Biochem Zool; 2017; 90(2):153-165. PubMed ID: 28277963 [TBL] [Abstract][Full Text] [Related]
12. Phenotype manipulations confirm the role of pectoral muscles and haematocrit in avian maximal thermogenic capacity. Petit M; Vézina F J Exp Biol; 2014 Mar; 217(Pt 6):824-30. PubMed ID: 24198261 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic flexibility of thermogenesis in the hwamei (Garrulax canorus): responses to cold acclimation. Zhou LM; Xia SS; Chen Q; Wang RM; Zheng WH; Liu JS Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R330-6. PubMed ID: 26661097 [TBL] [Abstract][Full Text] [Related]
14. Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Vézina F; Gustowska A; Jalvingh KM; Chastel O; Piersma T Physiol Biochem Zool; 2009; 82(2):129-42. PubMed ID: 19199554 [TBL] [Abstract][Full Text] [Related]
15. Basal and maximal metabolic rates differ in their response to rapid temperature change among avian species. Dubois K; Hallot F; Vézina F J Comp Physiol B; 2016 Oct; 186(7):919-35. PubMed ID: 27233918 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary design of a flexible, seasonally migratory, avian phenotype: why trade gizzard mass against pectoral muscle mass? Mathot KJ; Kok EMA; Burant JB; Dekinga A; Manche P; Saintonge D; Piersma T Proc Biol Sci; 2019 May; 286(1903):20190518. PubMed ID: 31113330 [TBL] [Abstract][Full Text] [Related]
17. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus). Van Sant MJ; Hammond KA Physiol Biochem Zool; 2008; 81(5):605-11. PubMed ID: 18729765 [TBL] [Abstract][Full Text] [Related]
18. How does mitochondrial function relate to thermogenic capacity and basal metabolic rate in small birds? Milbergue MS; Vézina F; Desrosiers V; Blier PU J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35762381 [TBL] [Abstract][Full Text] [Related]
19. Obligatory homeothermy of mesic habitat-adapted African striped mice, Rhabdomys pumilio, is governed by seasonal basal metabolism and year-round 'thermogenic readiness' of brown adipose tissue. Welman S; Jastroch M; Mzilikazi N J Exp Biol; 2022 Jul; 225(13):. PubMed ID: 35694963 [TBL] [Abstract][Full Text] [Related]
20. Limited access to food and physiological trade-offs in a long-distance migrant shorebird. I. Energy metabolism, behavior, and body-mass regulation. Vézina F; Petit M; Buehler DM; Dekinga A; Piersma T Physiol Biochem Zool; 2009; 82(5):549-60. PubMed ID: 19663606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]