These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17139154)

  • 21. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography.
    Popiel S; Sankowska M
    J Chromatogr A; 2011 Nov; 1218(47):8457-79. PubMed ID: 22015307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescent probes for the detection of chemical warfare agents.
    Meng WQ; Sedgwick AC; Kwon N; Sun M; Xiao K; He XP; Anslyn EV; James TD; Yoon J
    Chem Soc Rev; 2023 Jan; 52(2):601-662. PubMed ID: 36149439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic Wave Sensors for Detection of Blister Chemical Warfare Agents and Their Simulants.
    Grabka M; Witkiewicz Z; Jasek K; Piwowarski K
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Application of a Single-Column GC-MS-MS Method for the Rapid Analysis of Chemical Warfare Agents and Breakdown Products.
    Young SA; Capacio BR
    J Anal Toxicol; 2019 Apr; 43(3):179-187. PubMed ID: 30364974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas.
    Ringer JM
    Eur J Mass Spectrom (Chichester); 2013; 19(3):175-85. PubMed ID: 24308198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 'Dilute-and-shoot' RSLC-MS-MS method for fast detection of nerve and vesicant chemical warfare agent metabolites in urine.
    Rodin I; Braun A; Stavrianidi A; Baygildiev T; Shpigun O; Oreshkin D; Rybalchenko I
    J Anal Toxicol; 2015; 39(1):69-74. PubMed ID: 25326204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deploying Portable Gas Chromatography-Mass Spectrometry (GC-MS) to Military Users for the Identification of Toxic Chemical Agents in Theater.
    Leary PE; Kammrath BW; Lattman KJ; Beals GL
    Appl Spectrosc; 2019 Aug; 73(8):841-858. PubMed ID: 31008649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer.
    Kidera M; Seto Y; Takahashi K; Enomoto S; Kishi S; Makita M; Nagamatsu T; Tanaka T; Toda M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1215-9. PubMed ID: 21242103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aqueous extraction followed by derivatization and liquid chromatography-mass spectrometry analysis: A unique strategy for trace detection and identification of G-nerve agents in environmental matrices.
    Weissberg A; Madmon M; Elgarisi M; Dagan S
    J Chromatogr A; 2018 Nov; 1577():24-30. PubMed ID: 30297234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-substrate derivatization for detection of highly volatile G-series chemical warfare agents via paper spray mass spectrometry.
    Mach PM; Dhummakupt ES; Carmany DO; McBride EM; Busch MW; Demond PS; Rizzo GM; Hollinshead DE; Glaros T
    Rapid Commun Mass Spectrom; 2018 Dec; 32(23):1979-1983. PubMed ID: 30153356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Ion Mobility Spectrometry with Novel Atmospheric Electron Emission Ionization for Field Detection of Gaseous and Blister Chemical Warfare Agents.
    Seto Y; Hashimoto R; Taniguchi T; Ohrui Y; Nagoya T; Iwamatsu T; Komaru S; Usui D; Morimoto S; Sakamoto Y; Ishizaki A; Nishide T; Inoue Y; Sugiyama H; Nakano N
    Anal Chem; 2019 Apr; 91(8):5403-5414. PubMed ID: 30920801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.
    Seto Y; Kanamori-Kataoka M; Tsuge K; Ohsawa I; Iura K; Itoi T; Sekiguchi H; Matsushita K; Yamashiro S; Sano Y; Sekiguchi H; Maruko H; Takayama Y; Sekioka R; Okumura A; Takada Y; Nagano H; Waki I; Ezawa N; Tanimoto H; Honjo S; Fukano M; Okada H
    Anal Chem; 2013 Mar; 85(5):2659-66. PubMed ID: 23339735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical warfare agent detection: a review of current trends and future perspective.
    Pacsial-Ong EJ; Aguilar ZP
    Front Biosci (Schol Ed); 2013 Jan; 5(2):516-43. PubMed ID: 23277066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization.
    Ahrens A; Allers M; Bock H; Hitzemann M; Ficks A; Zimmermann S
    Anal Chem; 2022 Nov; 94(44):15440-15447. PubMed ID: 36301910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces.
    L'Hermite D; Vors E; Vercouter T; Moutiers G
    Environ Sci Pollut Res Int; 2016 May; 23(9):8219-26. PubMed ID: 26906000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical Warfare Agents in Terrorist Attacks: An Interregional Comparison, Tactical Response Implications, and the Emergence of Counterterrorism Medicine.
    Tin D; Pepper M; Hart A; Hertelendy A; Ciottone G
    J Spec Oper Med; 2021; 21(3):51-54. PubMed ID: 34529805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. μ-PADs for detection of chemical warfare agents.
    Pardasani D; Tak V; Purohit AK; Dubey DK
    Analyst; 2012 Dec; 137(23):5648-53. PubMed ID: 23086107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry.
    Wolf JC; Schaer M; Siegenthaler P; Zenobi R
    Anal Chem; 2015 Jan; 87(1):723-9. PubMed ID: 25427190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasensitive detection of trace chemical warfare agent-related compounds by thermal desorption associative ionization time-of-flight mass spectrometry.
    Huang J; Shu J; Yang B; Guo Y; Zhang Z; Jiang K; Li Z
    Talanta; 2021 Dec; 235():122788. PubMed ID: 34517646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.
    Sambrook MR; Notman S
    Chem Soc Rev; 2013 Dec; 42(24):9251-67. PubMed ID: 24048279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.