These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17139517)

  • 1. Study of discriminant analysis applied to motor imagery bipolar data.
    Vidaurre C; Scherer R; Cabeza R; Schlögl A; Pfurtscheller G
    Med Biol Eng Comput; 2007 Jan; 45(1):61-8. PubMed ID: 17139517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces.
    Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):550-6. PubMed ID: 17355071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features.
    Hsu WY
    J Neurosci Methods; 2010 Jun; 189(2):295-302. PubMed ID: 20381529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of four-class motor imagery EEG data for the BCI-competition 2005.
    Schlögl A; Lee F; Bischof H; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):L14-22. PubMed ID: 16317224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier.
    Hsu WY
    Comput Biol Med; 2011 Aug; 41(8):633-9. PubMed ID: 21683346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison approach toward finding the best feature and classifier in cue-based BCI.
    Boostani R; Graimann B; Moradi MH; Pfurtscheller G
    Med Biol Eng Comput; 2007 Apr; 45(4):403-12. PubMed ID: 17318660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fully on-line adaptive BCI.
    Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1214-9. PubMed ID: 16761852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.
    Faradji F; Ward RK; Birch GE
    J Neurosci Methods; 2009 Jun; 180(2):330-9. PubMed ID: 19439361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive on-line classification for EEG-based brain computer interfaces with AAR parameters and band power estimates.
    Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G
    Biomed Tech (Berl); 2005 Nov; 50(11):350-4. PubMed ID: 16370147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear and nonstationary framework for feature extraction and classification of motor imagery.
    Trad D; Al-ani T; Monacelli E; Jemni M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975488. PubMed ID: 22275685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces.
    Nicolas-Alonso LF; Corralejo R; Gomez-Pilar J; Álvarez D; Hornero R
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):702-12. PubMed ID: 25680208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A time-series prediction approach for feature extraction in a brain-computer interface.
    Coyle D; Prasad G; McGinnity TM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):461-7. PubMed ID: 16425827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on magnetoencephalography-brain computer interface based on the PCA and LDA data reduction].
    Wang J; Zhou L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1069-74. PubMed ID: 22295687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System.
    Resalat SN; Saba V
    Basic Clin Neurosci; 2016 Jan; 7(1):13-9. PubMed ID: 27303595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An empirical bayesian framework for brain-computer interfaces.
    Lei X; Yang P; Yao D
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):521-9. PubMed ID: 19622442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor imagery task classification for brain computer interface applications using spatiotemporal principle component analysis.
    Vallabhaneni A; He B
    Neurol Res; 2004 Apr; 26(3):282-7. PubMed ID: 15142321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional random fields as classifiers for three-class motor-imagery brain-computer interfaces.
    Hasan BA; Gan JQ
    J Neural Eng; 2011 Apr; 8(2):025013. PubMed ID: 21436518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.