BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17139741)

  • 21. The Role of Temporal Envelope and Fine Structure in Mandarin Lexical Tone Perception in Auditory Neuropathy Spectrum Disorder.
    Wang S; Dong R; Liu D; Wang Y; Liu B; Zhang L; Xu L
    PLoS One; 2015; 10(6):e0129710. PubMed ID: 26052707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of spectral cues to mandarin lexical tone recognition in normal-hearing and hearing-impaired Mandarin Chinese speakers.
    Wang S; Mannell R; Newall P; Han D
    Ear Hear; 2011 Feb; 32(1):97-103. PubMed ID: 20625301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lexical tone recognition with spectrally mismatched envelopes.
    Zhou N; Xu L
    Hear Res; 2008 Dec; 246(1-2):36-43. PubMed ID: 18848614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Contributions of temporal and spectral cues to Chinese tone recognition in the continuous interleaved sampling strategy].
    Li C; Pan X; Liu J; Nie K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):41-4. PubMed ID: 16532806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of low-frequency harmonics to Mandarin Chinese tone identification in quiet and six-talker babble background.
    Liu C; Azimi B; Bhandary M; Hu Y
    J Acoust Soc Am; 2014 Jan; 135(1):428-38. PubMed ID: 24437783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consonant identification in noise using Hilbert-transform temporal fine-structure speech and recovered-envelope speech for listeners with normal and impaired hearing.
    Léger AC; Reed CM; Desloge JG; Swaminathan J; Braida LD
    J Acoust Soc Am; 2015 Jul; 138(1):389-403. PubMed ID: 26233038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Relative Weight of Temporal Envelope Cues in Different Frequency Regions for Mandarin Sentence Recognition.
    Guo Y; Sun Y; Feng Y; Zhang Y; Yin S
    Neural Plast; 2017; 2017():7416727. PubMed ID: 28203463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic cues to tonal contrasts in Mandarin: implications for cochlear implants.
    Kuo YC; Rosen S; Faulkner A
    J Acoust Soc Am; 2008 May; 123(5):2815. PubMed ID: 18529197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-frequency fine-structure cues allow for the online use of lexical stress during spoken-word recognition in spectrally degraded speech.
    Kong YY; Jesse A
    J Acoust Soc Am; 2017 Jan; 141(1):373. PubMed ID: 28147573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human Frequency Following Responses to Vocoded Speech: Amplitude Modulation Versus Amplitude Plus Frequency Modulation.
    Suresh CH; Krishnan A; Luo X
    Ear Hear; 2020; 41(2):300-311. PubMed ID: 31246660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benefit of temporal fine structure to speech perception in noise measured with controlled temporal envelopes.
    Eaves JM; Summerfield AQ; Kitterick PT
    J Acoust Soc Am; 2011 Jul; 130(1):501-7. PubMed ID: 21786915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users.
    Fu QJ; Chinchilla S; Galvin JJ
    J Assoc Res Otolaryngol; 2004 Sep; 5(3):253-60. PubMed ID: 15492884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral and temporal cues to pitch in noise-excited vocoder simulations of continuous-interleaved-sampling cochlear implants.
    Green T; Faulkner A; Rosen S
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2155-64. PubMed ID: 12430827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss.
    Fogerty D; Ahlstrom JB; Bologna WJ; Dubno JR
    J Acoust Soc Am; 2015 Jun; 137(6):3487-501. PubMed ID: 26093436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infants' and Adults' Use of Temporal Cues in Consonant Discrimination.
    Cabrera L; Werner L
    Ear Hear; 2017; 38(4):497-506. PubMed ID: 28338496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectro-temporal envelope changes caused by temporal fine structure modification.
    Kates JM
    J Acoust Soc Am; 2011 Jun; 129(6):3981-90. PubMed ID: 21682419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auditory Brainstem Representation of the Voice Pitch Contours in the Resolved and Unresolved Components of Mandarin Tones.
    Peng F; McKay CM; Mao D; Hou W; Innes-Brown H
    Front Neurosci; 2018; 12():820. PubMed ID: 30505262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human frequency following responses to iterated rippled noise with positive and negative gain: Differential sensitivity to waveform envelope and temporal fine-structure.
    Ananthakrishnan S; Krishnan A
    Hear Res; 2018 Sep; 367():113-123. PubMed ID: 30096491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.