These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 17139743)
1. Perception of synthetic vowel exemplars of 4-year-old children and estimation of their corresponding vocal tract shapes. McGowan RS J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2850-8. PubMed ID: 17139743 [TBL] [Abstract][Full Text] [Related]
2. Relation of vocal tract shape, formant transitions, and stop consonant identification. Story BH; Bunton K J Speech Lang Hear Res; 2010 Dec; 53(6):1514-28. PubMed ID: 20643794 [TBL] [Abstract][Full Text] [Related]
3. Vowel acoustic space development in children: a synthesis of acoustic and anatomic data. Vorperian HK; Kent RD J Speech Lang Hear Res; 2007 Dec; 50(6):1510-45. PubMed ID: 18055771 [TBL] [Abstract][Full Text] [Related]
4. Identification of synthetic vowels based on selected vocal tract area functions. Bunton K; Story BH J Acoust Soc Am; 2009 Jan; 125(1):19-22. PubMed ID: 19173389 [TBL] [Abstract][Full Text] [Related]
5. Formant pattern ambiguity of vowel sounds. Maurer D; D'Heureuse C; Landis T Int J Neurosci; 2000; 100(1-4):39-76. PubMed ID: 10512548 [TBL] [Abstract][Full Text] [Related]
6. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood. Ménard L; Schwartz JL; Boë LJ J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462 [TBL] [Abstract][Full Text] [Related]
7. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels. Maurer D; Hess M; Gross M Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285 [TBL] [Abstract][Full Text] [Related]
8. Formant frequency estimation of high-pitched vowels using weighted linear prediction. Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127 [TBL] [Abstract][Full Text] [Related]
9. Producing American English vowels during vocal tract growth: a perceptual categorization study of synthesized vowels. Ménard L; Davis BL; Boë LJ; Roy JP J Speech Lang Hear Res; 2009 Oct; 52(5):1268-85. PubMed ID: 19696438 [TBL] [Abstract][Full Text] [Related]
10. A Formant Range Profile for Singers. Titze IR; Maxfield LM; Walker MC J Voice; 2017 May; 31(3):382.e9-382.e13. PubMed ID: 28029556 [TBL] [Abstract][Full Text] [Related]
11. Frequency measurement of vowel formants produced by Brazilian children aged between 4 and 8 years. Viegas F; Viegas D; Baeck HE J Voice; 2015 May; 29(3):292-8. PubMed ID: 25510161 [TBL] [Abstract][Full Text] [Related]
12. Acoustic roles of the laryngeal cavity in vocal tract resonance. Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318 [TBL] [Abstract][Full Text] [Related]
13. The acoustic bases for gender identification from children's voices. Perry TL; Ohde RN; Ashmead DH J Acoust Soc Am; 2001 Jun; 109(6):2988-98. PubMed ID: 11425141 [TBL] [Abstract][Full Text] [Related]
14. Vocal tract area functions and formant frequencies in opera tenors' modal and falsetto registers. Echternach M; Sundberg J; Baumann T; Markl M; Richter B J Acoust Soc Am; 2011 Jun; 129(6):3955-63. PubMed ID: 21682417 [TBL] [Abstract][Full Text] [Related]
15. Effect of voice quality on perceived height of English vowels. Lotto AJ; Holt LL; Kluender KR Phonetica; 1997; 54(2):76-93. PubMed ID: 9248064 [TBL] [Abstract][Full Text] [Related]
16. A statistical, formant-pattern model for segregating vowel type and vocal-tract length in developmental formant data. Turner RE; Walters TC; Monaghan JJ; Patterson RD J Acoust Soc Am; 2009 Apr; 125(4):2374-86. PubMed ID: 19354411 [TBL] [Abstract][Full Text] [Related]
17. Acoustics of children's speech: developmental changes of temporal and spectral parameters. Lee S; Potamianos A; Narayanan S J Acoust Soc Am; 1999 Mar; 105(3):1455-68. PubMed ID: 10089598 [TBL] [Abstract][Full Text] [Related]
18. On Short-Time Estimation of Vocal Tract Length from Formant Frequencies. Lammert AC; Narayanan SS PLoS One; 2015; 10(7):e0132193. PubMed ID: 26177102 [TBL] [Abstract][Full Text] [Related]
19. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method. Shiraishi M; Mishima K; Umeda H J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645 [TBL] [Abstract][Full Text] [Related]
20. On the ability of a physiologically constrained area function model of the vocal tract to produce normal formant patterns under perturbed conditions. Story BH J Acoust Soc Am; 2004 Apr; 115(4):1760-70. PubMed ID: 15101654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]