These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17139755)

  • 1. Anomalous negative dispersion in bone can result from the interference of fast and slow waves.
    Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):EL55-61. PubMed ID: 17139755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone.
    Anderson CC; Marutyan KR; Holland MR; Wear KA; Miller JG
    J Acoust Soc Am; 2008 Sep; 124(3):1781-9. PubMed ID: 19045668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem.
    Sebaa N; Fellah ZE; Fellah M; Ogam E; Wirgin A; Mitri FG; Depollier C; Lauriks W
    J Acoust Soc Am; 2006 Oct; 120(4):1816-24. PubMed ID: 17069280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.
    Taki H; Nagatani Y; Matsukawa M; Mizuno K; Sato T
    J Acoust Soc Am; 2015 Apr; 137(4):1683-92. PubMed ID: 25920821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption.
    Haïat G; Lhémery A; Renaud F; Padilla F; Laugier P; Naili S
    J Acoust Soc Am; 2008 Dec; 124(6):4047-58. PubMed ID: 19206827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.
    Anderson CC; Bauer AQ; Holland MR; Pakula M; Laugier P; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2010 Nov; 128(5):2940-8. PubMed ID: 21110589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone.
    Lee KI; Humphrey VF; Leighton TG; Yoon SW
    Ultrasonics; 2007 Nov; 46(4):323-30. PubMed ID: 17573089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian estimation of the underlying bone properties from mixed fast and slow mode ultrasonic signals.
    Marutyan KR; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2007 Jan; 121(1):EL8-15. PubMed ID: 17297820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone.
    Ta D; Wang W; Wang Y; Le LH; Zhou Y
    Ultrasound Med Biol; 2009 Apr; 35(4):641-52. PubMed ID: 19153000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Problems with ultrasonic measurements of shear modules of structured media.
    Besdo D; Besdo S; Behrens BA; Bouguecha A
    Acta Biomater; 2007 Sep; 3(5):723-33. PubMed ID: 17289452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.