These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17139755)

  • 21. Time-domain separation of interfering waves in cancellous bone using bandlimited deconvolution: simulation and phantom study.
    Wear KA
    J Acoust Soc Am; 2014 Apr; 135(4):2102-12. PubMed ID: 25235007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model.
    Haïat G; Naili S
    Biomech Model Mechanobiol; 2011 Feb; 10(1):95-108. PubMed ID: 20490887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative dispersion in bone: the role of interference in measurements of the apparent phase velocity of two temporally overlapping signals.
    Bauer AQ; Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2008 Apr; 123(4):2407-14. PubMed ID: 18397043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of critical and viscous frequencies for Biot theory in cancellous bone.
    Hughes ER; Leighton TG; Petley GW; White PR; Chivers RC
    Ultrasonics; 2003 Jul; 41(5):365-8. PubMed ID: 12788218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical Analysis of Ultrasound Backscattered Waves in Cancellous Bone Using a Finite-Difference Time-Domain Method: Isolation of the Backscattered Waves From Various Ranges of Bone Depths.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1201-10. PubMed ID: 26263571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.
    Nelson AM; Hoffman JJ; Anderson CC; Holland MR; Nagatani Y; Mizuno K; Matsukawa M; Miller JG
    J Acoust Soc Am; 2011 Oct; 130(4):2233-40. PubMed ID: 21973378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.
    Hoffman JJ; Nelson AM; Holland MR; Miller JG
    J Acoust Soc Am; 2012 Sep; 132(3):1830-7. PubMed ID: 22978910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone.
    Hughes ER; Leighton TG; White PR; Petley GW
    J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue.
    Tran TN; Stieglitz L; Gu YJ; Le LH
    Ultrasound Med Biol; 2013 Dec; 39(12):2422-30. PubMed ID: 24035409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity analysis of ultrasonic guided waves propagating in trilayered bone models: a numerical study.
    Tran TNHT; Le LH; Sacchi MD; Nguyen VH
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1269-1279. PubMed ID: 29777322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasonic wave propagation in bovine cancellous bone.
    Hosokawa A; Otani T
    J Acoust Soc Am; 1997 Jan; 101(1):558-62. PubMed ID: 9000743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.
    Wear KA
    J Acoust Soc Am; 2010 Oct; 128(4):2191-203. PubMed ID: 20968389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring guided waves in long bones: modeling and experiments in free and immersed plates.
    Moilanen P; Nicholson PH; Kilappa V; Cheng S; Timonen J
    Ultrasound Med Biol; 2006 May; 32(5):709-19. PubMed ID: 16677930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasonic guided waves in bone.
    Moilanen P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1277-86. PubMed ID: 18599415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of in vivo cortical bone thickness using ultrasonic waves.
    Mano I; Horii K; Hagino H; Miki T; Matsukawa M; Otani T
    J Med Ultrason (2001); 2015 Jul; 42(3):315-22. PubMed ID: 26576782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. What kind of waves are measured in trabecular bone?
    Pakula M
    Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of velocity and attenuation of shear waves in bovine compact bone using ultrasonic spectroscopy.
    Wu J; Cubberley F
    Ultrasound Med Biol; 1997; 23(1):129-34. PubMed ID: 9080625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.