These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17140416)

  • 1. Caenorhabditis elegans has two genes encoding functional d-aspartate oxidases.
    Katane M; Seida Y; Sekine M; Furuchi T; Homma H
    FEBS J; 2007 Jan; 274(1):137-49. PubMed ID: 17140416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative characterization of three D-aspartate oxidases and one D-amino acid oxidase from Caenorhabditis elegans.
    Katane M; Saitoh Y; Seida Y; Sekine M; Furuchi T; Homma H
    Chem Biodivers; 2010 Jun; 7(6):1424-34. PubMed ID: 20564561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region.
    Morinaga H; Yonekura S; Nakamura N; Sugiyama H; Yonei S; Zhang-Akiyama QM
    DNA Repair (Amst); 2009 Jul; 8(7):844-51. PubMed ID: 19481506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic characterization of Tv-ant-1, a Caenorhabditis elegans tag-61 homologue from the parasitic nematode Trichostrongylus vitrinus.
    Hu M; Campbell BE; Pellegrino M; Loukas A; Beveridge I; Ranganathan S; Gasser RB
    Gene; 2007 Aug; 397(1-2):12-25. PubMed ID: 17512141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of d-aspartate oxidase from Caenorhabditis elegans: its potential use in the determination of free d-glutamate in biological samples.
    Katane M; Kuwabara H; Nakayama K; Saitoh Y; Miyamoto T; Sekine M; Homma H
    Biochim Biophys Acta Proteins Proteom; 2020 Aug; 1868(8):140442. PubMed ID: 32376478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of core 1 O-glycan T-synthase from Caenorhabditis elegans.
    Ju T; Zheng Q; Cummings RD
    Glycobiology; 2006 Oct; 16(10):947-58. PubMed ID: 16762980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster.
    Rhomberg S; Fuchsluger C; Rendić D; Paschinger K; Jantsch V; Kosma P; Wilson IB
    FEBS J; 2006 May; 273(10):2244-56. PubMed ID: 16650000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel nuclear-localized protein with special adenylate kinase properties from Caenorhabditis elegans.
    Zhai R; Meng G; Zhao Y; Liu B; Zhang G; Zheng X
    FEBS Lett; 2006 Jul; 580(16):3811-7. PubMed ID: 16781712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the role of phosphomethylethanolamine N-methyltransferase from Caenorhabditis elegans in phosphocholine biosynthesis by biochemical and kinetic analysis.
    Palavalli LH; Brendza KM; Haakenson W; Cahoon RE; McLaird M; Hicks LM; McCarter JP; Williams DJ; Hresko MC; Jez JM
    Biochemistry; 2006 May; 45(19):6056-65. PubMed ID: 16681378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the active site residues arginine-216 and arginine-237 in the substrate specificity of mammalian D-aspartate oxidase.
    Katane M; Saitoh Y; Maeda K; Hanai T; Sekine M; Furuchi T; Homma H
    Amino Acids; 2011 Feb; 40(2):467-76. PubMed ID: 20567862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli.
    Seo JS; Lee YM; Park HG; Lee JS
    Biochem Biophys Res Commun; 2006 Feb; 340(3):901-8. PubMed ID: 16403454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of a cDNA encoding mouse D-aspartate oxidase and functional characterization of its recombinant proteins by site-directed mutagenesis.
    Katane M; Furuchi T; Sekine M; Homma H
    Amino Acids; 2007 Jan; 32(1):69-78. PubMed ID: 17469229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of two human cDNAs encoding the mRNA capping enzyme.
    Tsukamoto T; Shibagaki Y; Murakoshi T; Suzuki M; Nakamura A; Gotoh H; Mizumoto K
    Biochem Biophys Res Commun; 1998 Feb; 243(1):101-8. PubMed ID: 9473487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode.
    Nomura H; Athauda SB; Wada H; Maruyama Y; Takahashi K; Inoue H
    J Biochem; 2006 Jun; 139(6):967-79. PubMed ID: 16788047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caenorhabditis elegans has two isozymic forms, CE-1 and CE-2, of fructose-1,6-bisphosphate aldolase which are encoded by different genes.
    Inoue T; Yatsuki H; Kusakabe T; Joh K; Takasaki Y; Nikoh N; Miyata T; Hori K
    Arch Biochem Biophys; 1997 Mar; 339(1):226-34. PubMed ID: 9056253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the methylmalonyl-CoA epimerase from Caenorhabditis elegans.
    Kühnl J; Bobik T; Procter JB; Burmeister C; Höppner J; Wilde I; Lüersen K; Torda AE; Walter RD; Liebau E
    FEBS J; 2005 Mar; 272(6):1465-77. PubMed ID: 15752362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning, expression and characterization of a novel class glutathione S-transferase from the fungus Cunninghamella elegans.
    Cha CJ; Kim SJ; Kim YH; Stingley R; Cerniglia CE
    Biochem J; 2002 Dec; 368(Pt 2):589-95. PubMed ID: 12196209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the substrate specificity of porcine kidney D-amino acid oxidase by mutagenesis of the "active-site lid".
    Setoyama C; Nishina Y; Mizutani H; Miyahara I; Hirotsu K; Kamiya N; Shiga K; Miura R
    J Biochem; 2006 May; 139(5):873-9. PubMed ID: 16751595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of recombinant protein preparations of Endonuclease G-homologs from yeast, C. elegans and humans.
    Kieper J; Lauber C; Gimadutdinow O; Urbańska A; Cymerman I; Ghosh M; Szczesny B; Meiss G
    Protein Expr Purif; 2010 Sep; 73(1):99-106. PubMed ID: 20382228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is rat an appropriate animal model to study the involvement of D-serine catabolism in schizophrenia? Insights from characterization of D-amino acid oxidase.
    Frattini LF; Piubelli L; Sacchi S; Molla G; Pollegioni L
    FEBS J; 2011 Nov; 278(22):4362-73. PubMed ID: 21981077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.