These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 17140593)
41. Synthesis, characterization and SERS activity of Au-Ag nanorods. Philip D; Gopchandran KG; Unni C; Nissamudeen KM Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):780-4. PubMed ID: 17964213 [TBL] [Abstract][Full Text] [Related]
42. Sonoelectrochemical synthesis of spike-like gold-silver alloy nanoparticles from bulk substrates and the application on surface-enhanced Raman scattering. Liu YC; Yang KH; Yang SJ Anal Chim Acta; 2006 Jul; 572(2):290-4. PubMed ID: 17723491 [TBL] [Abstract][Full Text] [Related]
43. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Kim JH; Bryan WW; Lee TR Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate. Wang N; Yang HF; Zhu X; Zhang R; Wang Y; Huang GF; Zhang ZR Nanotechnology; 2009 Aug; 20(31):315603. PubMed ID: 19597257 [TBL] [Abstract][Full Text] [Related]
45. Nanostructural silver and gold substrates for surface-enhanced Raman spectroscopy measurements prepared by galvanic displacement on germanium disks. Brejna PR; Griffiths PR; Yang J Appl Spectrosc; 2009 Apr; 63(4):396-400. PubMed ID: 19366504 [TBL] [Abstract][Full Text] [Related]
46. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
47. One-pot room-temperature synthesis of single-crystalline gold nanocorolla in water. Soejima T; Kimizuka N J Am Chem Soc; 2009 Oct; 131(40):14407-12. PubMed ID: 19757772 [TBL] [Abstract][Full Text] [Related]
48. Controlling the morphology of multi-branched gold nanoparticles. Ahmed W; Kooij ES; van Silfhout A; Poelsema B Nanotechnology; 2010 Mar; 21(12):125605. PubMed ID: 20203353 [TBL] [Abstract][Full Text] [Related]
50. Manipulation of the growth of gold and silver nanomaterials on glass by seeding approach. Lee KH; Huang KM; Tseng WL; Chiu TC; Lin YW; Chang HT Langmuir; 2007 Jan; 23(3):1435-42. PubMed ID: 17241070 [TBL] [Abstract][Full Text] [Related]
51. Advanced porous gold nanofibers for highly efficient and stable molecular sensing platforms. Lee HO; Kim EM; Yu H; Jung JS; Chae WS Nanotechnology; 2009 Aug; 20(32):325604. PubMed ID: 19620749 [TBL] [Abstract][Full Text] [Related]
52. Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications. Sakir M; Pekdemir S; Karatay A; Küçüköz B; Ipekci HH; Elmali A; Demirel G; Onses MS ACS Appl Mater Interfaces; 2017 Nov; 9(45):39795-39803. PubMed ID: 29048151 [TBL] [Abstract][Full Text] [Related]
53. Easy deposition of Ag onto polystyrene beads for developing surface-enhanced-Raman-scattering-based molecular sensors. Kim K; Lee HB; Park HK; Shin KS J Colloid Interface Sci; 2008 Feb; 318(2):195-201. PubMed ID: 18001760 [TBL] [Abstract][Full Text] [Related]
54. Effects of alkylated polyethylenimines on the formation of gold nanoplates. Chen CC; Hsu CH; Kuo PL Langmuir; 2007 Jun; 23(12):6801-6. PubMed ID: 17480111 [TBL] [Abstract][Full Text] [Related]
55. Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates. Li Z; Tong WM; Stickle WF; Neiman DL; Williams RS; Hunter LL; Talin AA; Li D; Brueck SR Langmuir; 2007 Apr; 23(9):5135-8. PubMed ID: 17385901 [TBL] [Abstract][Full Text] [Related]
56. Spectroscopic analysis of L-histidine adsorbed on gold and silver nanoparticle surfaces investigated by surface-enhanced Raman scattering. Lim JK; Kim Y; Lee SY; Joo SW Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):286-9. PubMed ID: 17572135 [TBL] [Abstract][Full Text] [Related]
57. Preparation of DNA-silver nanohybrids in multilayer nanoreactors by in situ electrochemical reduction, characterization, and application. Shang L; Wang Y; Huang L; Dong S Langmuir; 2007 Jul; 23(14):7738-44. PubMed ID: 17552547 [TBL] [Abstract][Full Text] [Related]
58. Role of Plasmonic Antenna in Hot Carrier-Driven Reactions on Bimetallic Nanostructures. Li Z; Rigor J; Ehtesabi S; Gojare S; Kupfer S; Gräfe S; Large N; Kurouski D J Phys Chem C Nanomater Interfaces; 2023 Nov; 127(46):22635-22645. PubMed ID: 38357685 [TBL] [Abstract][Full Text] [Related]
59. Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars. Li JJ; Wu C; Zhao J; Weng GJ; Zhu J; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():380-387. PubMed ID: 29960240 [TBL] [Abstract][Full Text] [Related]
60. From nanoplates to microtubes and microrods: a surfactant-free rolling mechanism for facile fabrication and morphology evolution of Ag2S films. Li DP; Zheng Z; Lei Y; Yang FL; Ge SX; Zhang YD; Huang BJ; Gao YH; Wong KW; Lau WM Chemistry; 2011 Jun; 17(27):7694-700. PubMed ID: 21563220 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]