These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 17140593)
61. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces. Sławiński GW; Zamborini FP Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472 [TBL] [Abstract][Full Text] [Related]
62. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide. Li YS; Cheng J; Chung KT Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042 [TBL] [Abstract][Full Text] [Related]
63. Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy. Wang X; Zhang Z; Hartland GV J Phys Chem B; 2005 Nov; 109(43):20324-30. PubMed ID: 16853629 [TBL] [Abstract][Full Text] [Related]
65. Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles. Shirtcliffe N; Nickel U; Schneider S J Colloid Interface Sci; 1999 Mar; 211(1):122-129. PubMed ID: 9929443 [TBL] [Abstract][Full Text] [Related]
66. In-Plate and On-Plate Structural Control of Ultra-Stable Gold/Silver Bimetallic Nanoplates as Redox Catalysts, Nanobuilding Blocks, and Single-Nanoparticle Surface-Enhanced Raman Scattering Probes. Oh JH; Shin H; Choi JY; Jung HW; Choi Y; Lee JS ACS Appl Mater Interfaces; 2016 Oct; 8(40):27140-27150. PubMed ID: 27696833 [TBL] [Abstract][Full Text] [Related]
67. Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Jarvis RM; Law N; Shadi IT; O'Brien P; Lloyd JR; Goodacre R Anal Chem; 2008 Sep; 80(17):6741-6. PubMed ID: 18661956 [TBL] [Abstract][Full Text] [Related]
68. Self-assembled silver nanochains for surface-enhanced Raman scattering. Yang Y; Shi J; Tanaka T; Nogami M Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408 [TBL] [Abstract][Full Text] [Related]
69. Silver nanoplates: from biological to biomimetic synthesis. Xie J; Lee JY; Wang DI; Ting YP ACS Nano; 2007 Dec; 1(5):429-39. PubMed ID: 19206664 [TBL] [Abstract][Full Text] [Related]
70. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related]
71. Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures. Ye J; Van Dorpe P; Van Roy W; Borghs G; Maes G Langmuir; 2009 Feb; 25(3):1822-7. PubMed ID: 19125593 [TBL] [Abstract][Full Text] [Related]
72. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086 [TBL] [Abstract][Full Text] [Related]
73. Block copolymer-mediated synthesis of size-tunable gold nanospheres and nanoplates. Goy-López S; Castro E; Taboada P; Mosquera V Langmuir; 2008 Nov; 24(22):13186-96. PubMed ID: 18925755 [TBL] [Abstract][Full Text] [Related]
74. Investigation of the effects of the local environment on the surface-enhanced Raman spectra of striped gold/silver nanorod arrays. Broglin BL; Andreu A; Dhussa N; Heath JA; Gerst J; Dudley B; Holland D; El-Kouedi M Langmuir; 2007 Apr; 23(8):4563-8. PubMed ID: 17346064 [TBL] [Abstract][Full Text] [Related]
75. Size-controlled growth of colloidal gold nanoplates and their high-purity acquisition. Fan X; Guo ZR; Hong JM; Zhang Y; Zhang JN; Gu N Nanotechnology; 2010 Mar; 21(10):105602. PubMed ID: 20154378 [TBL] [Abstract][Full Text] [Related]
76. Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Zhang Q; Ge J; Pham T; Goebl J; Hu Y; Lu Z; Yin Y Angew Chem Int Ed Engl; 2009; 48(19):3516-9. PubMed ID: 19347914 [TBL] [Abstract][Full Text] [Related]
77. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Xiong Y; McLellan JM; Chen J; Yin Y; Li ZY; Xia Y J Am Chem Soc; 2005 Dec; 127(48):17118-27. PubMed ID: 16316260 [TBL] [Abstract][Full Text] [Related]
79. Laser-MBE of nickel nanowires using AAO template: a new active substrate of surface enhanced Raman scattering. Zhang L; Fang Y; Zhang P Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):91-5. PubMed ID: 17627875 [TBL] [Abstract][Full Text] [Related]
80. Synthesis of silver nanoplates by two-dimensional oriented attachment. Liu Z; Zhou H; Lim YS; Song JH; Piao L; Kim SH Langmuir; 2012 Jun; 28(25):9244-9. PubMed ID: 22647237 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]