These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17140620)

  • 1. Development of a continuous electrolytic system with discharging only one pH-controlled stream and its characteristics.
    Kim KW; Kim IT; Park GI; Lee EH
    Water Res; 2007 Jan; 41(2):303-14. PubMed ID: 17140620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolytic recovery of chromium salts from tannery wastewater.
    Sirajuddin ; Kakakhel L; Lutfullah G; Bhanger MI; Shah A; Niaz A
    J Hazard Mater; 2007 Sep; 148(3):560-5. PubMed ID: 17451875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.
    Rozendal RA; Hamelers HV; Molenkamp RJ; Buisman CJ
    Water Res; 2007 May; 41(9):1984-94. PubMed ID: 17343894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanogenesis in membraneless microbial electrolysis cells.
    Clauwaert P; Verstraete W
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):829-36. PubMed ID: 19050859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution.
    Kim KW; Kim YH; Lee SY; Lee EH; Song K; Song KC
    J Hazard Mater; 2009 Nov; 171(1-3):606-12. PubMed ID: 19604641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater.
    Rozendal RA; Sleutels TH; Hamelers HV; Buisman CJ
    Water Sci Technol; 2008; 57(11):1757-62. PubMed ID: 18547927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.
    Ren X; Wei Q; Hu S; Wei S
    J Hazard Mater; 2010 Sep; 181(1-3):908-15. PubMed ID: 20554384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of aluminum electrodes in electrocoagulation process.
    Mouedhen G; Feki M; Wery Mde P; Ayedi HF
    J Hazard Mater; 2008 Jan; 150(1):124-35. PubMed ID: 17537574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of ammonium ion from produced waters in petroleum offshore exploitation by a batch single-stage electrolytic process.
    de Lima RM; da Silva Wildhagen GR; da Cunha JW; Afonso JC
    J Hazard Mater; 2009 Jan; 161(2-3):1560-4. PubMed ID: 18508196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The operation characteristics and electrochemical reactions of a specific circulation-enhanced electrokinetics.
    Chang JH; Cheng SF
    J Hazard Mater; 2007 Mar; 141(1):168-75. PubMed ID: 16887266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of critical operational parameters on the circulation-enhanced electrokinetics.
    Chang JH; Liao YC
    J Hazard Mater; 2006 Feb; 129(1-3):186-93. PubMed ID: 16188380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal operational conditions for the electrochemical regeneration of a soil washing EDTA solution.
    Cesaro R; Esposito G
    J Environ Monit; 2009 Feb; 11(2):307-13. PubMed ID: 19212586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of pH and current on electrolytic dechlorination of trichloroethylene at a granular-graphite packed electrode.
    Al-Abed SR; Fang Y
    Chemosphere; 2006 Jun; 64(3):462-9. PubMed ID: 16384595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH transients during salt removal in isoelectric trapping separations: a curse revisited.
    Shave E; Vigh G
    Electrophoresis; 2007 Feb; 28(4):587-94. PubMed ID: 17226758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in electrolytic devices for ion chromatography.
    Liu Y; Srinivasan K; Pohl C; Avdalovic N
    J Biochem Biophys Methods; 2004 Sep; 60(3):205-32. PubMed ID: 15345293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of the solution pH due to exposure by high-voltage electric pulses.
    Saulis G; Lape R; Praneviciƫte R; Mickevicius D
    Bioelectrochemistry; 2005 Sep; 67(1):101-8. PubMed ID: 15967404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Case study of electrochemical metal removal from actual sediment, sludge, sewage and scallop organs and subsequent pH adjustment of sediment for agricultural use.
    Matsumoto N; Uemoto H; Saiki H
    Water Res; 2007 Jun; 41(12):2541-50. PubMed ID: 17475304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic oxidation of methyl tert-butyl ether (MTBE) in aqueous solution at a nickel electrode.
    Wu TN
    Chemosphere; 2007 Sep; 69(2):271-8. PubMed ID: 17553546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalytic system.
    Selcuk H; Sarikaya HZ; Bekbolet M; Anderson MA
    Chemosphere; 2006 Feb; 62(5):715-21. PubMed ID: 16005936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.