BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17140643)

  • 21. Influence of nutrient level on biodegradation and bioconcentration of phthalate acid esters in Chlorella vulgaris.
    Chi J; Li B; Wang QY; Liu H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):179-83. PubMed ID: 17182389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of nutrients and light on biodegradation of dibutyl phthalate and di-2-ethylexyl phthalate in Haihe Estuary.
    Li B; Chi J; Wu WX; Wang ZK
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):80-3. PubMed ID: 17589801
    [No Abstract]   [Full Text] [Related]  

  • 23. Effects of Potamogeton crispus L. on the fate of phthalic acid esters in an aquatic microcosm.
    Chi J; Yang Q
    Water Res; 2012 May; 46(8):2570-8. PubMed ID: 22405677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of phthalates by activated sludge and its biopolymers.
    Fang HH; Zheng H
    Environ Technol; 2004 Jul; 25(7):757-61. PubMed ID: 15346856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.
    Gani KM; Rajpal A; Kazmi AA
    Environ Sci Process Impacts; 2016 Mar; 18(3):406-16. PubMed ID: 26923228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerobic degradation of diethyl phthalate by Sphingomonas sp.
    Fang HH; Liang D; Zhang T
    Bioresour Technol; 2007 Feb; 98(3):717-20. PubMed ID: 16563747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Potamogeton crispus L.-bacteria interactions on the removal of phthalate acid esters from surface water.
    Chi J; Gao J
    Chemosphere; 2015 Jan; 119():59-64. PubMed ID: 24968306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China.
    Xu G; Li F; Wang Q
    Sci Total Environ; 2008 Apr; 393(2-3):333-40. PubMed ID: 18258283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of biofilm on removal of surrogate faecal microbes in a constructed wetland and maturation pond.
    Stott R; Tanner CC
    Water Sci Technol; 2005; 51(9):315-22. PubMed ID: 16042273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of phthalates in humans.
    Frederiksen H; Skakkebaek NE; Andersson AM
    Mol Nutr Food Res; 2007 Jul; 51(7):899-911. PubMed ID: 17604388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water.
    Chen CY; Wu PS; Chung YC
    Bioresour Technol; 2009 Oct; 100(19):4531-4. PubMed ID: 19423337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic degradation of dimethyl phthalate in wastewater in a UASB reactor.
    Liang DW; Zhang T; Fang HH
    Water Res; 2007 Jul; 41(13):2879-84. PubMed ID: 17509639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes.
    Gao DW; Wen ZD
    Sci Total Environ; 2016 Jan; 541():986-1001. PubMed ID: 26473701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling of the fate of selected endocrine disruptors in a municipal wastewater treatment plant in South East Queensland, Australia.
    Tan BL; Hawker DW; Müller JF; Leusch FD; Tremblay LA; Chapman HF
    Chemosphere; 2007 Sep; 69(4):644-54. PubMed ID: 17418883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradability of four phthalic acid esters under anaerobic condition assessed using natural sediment.
    Lertsirisopon R; Soda S; Sei K; Ike M; Fujita M
    J Environ Sci (China); 2006; 18(4):793-6. PubMed ID: 17078563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor.
    Huang PC; Tien CJ; Sun YM; Hsieh CY; Lee CC
    Chemosphere; 2008 Sep; 73(4):539-44. PubMed ID: 18687453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Start-up of a two-stage bioaugmented anoxic-oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations.
    Guo J; Ma F; Chang CC; Cui D; Wang L; Yang J; Wang L
    Bioresour Technol; 2009 Jul; 100(14):3483-8. PubMed ID: 19329304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus.
    Hwang SS; Choi HT; Song HG
    J Microbiol Biotechnol; 2008 Apr; 18(4):767-72. PubMed ID: 18467874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial degradation and treatment of polycyclic aromatic hydrocarbons and plasticizers.
    Kurane R
    Ann N Y Acad Sci; 1997 Nov; 829():118-34. PubMed ID: 9472317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of hydraulic retention time and sludge retention time on the fate of di-(2-ethylhexyl) phthalate in a laboratory-scale anaerobic-anoxic-aerobic activated sludge system.
    Huang M; Li Y; Gu G
    Bioresour Technol; 2008 Nov; 99(17):8107-11. PubMed ID: 18440226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.