These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 17140687)
1. Decontamination of poultry carcasses using steam or hot water in combination with rapid cooling, chilling or freezing of carcass surfaces. James C; James SJ; Hannay N; Purnell G; Barbedo-Pinto C; Yaman H; Araujo M; Gonzalez ML; Calvo J; Howell M; Corry JE Int J Food Microbiol; 2007 Mar; 114(2):195-203. PubMed ID: 17140687 [TBL] [Abstract][Full Text] [Related]
2. The effects on the microbiological condition of product of carcass dressing, cooling, and portioning processes at a poultry packing plant. Gill CO; Moza LF; Badoni M; Barbut S Int J Food Microbiol; 2006 Jul; 110(2):187-93. PubMed ID: 16793158 [TBL] [Abstract][Full Text] [Related]
3. Campylobacter spp. contamination of chicken carcasses during processing in relation to flock colonisation. Allen VM; Bull SA; Corry JE; Domingue G; Jørgensen F; Frost JA; Whyte R; Gonzalez A; Elviss N; Humphrey TJ Int J Food Microbiol; 2007 Jan; 113(1):54-61. PubMed ID: 17007949 [TBL] [Abstract][Full Text] [Related]
4. The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. Rosenquist H; Sommer HM; Nielsen NL; Christensen BB Int J Food Microbiol; 2006 Apr; 108(2):226-32. PubMed ID: 16478636 [TBL] [Abstract][Full Text] [Related]
5. Survival at refrigeration and freezing temperatures of Campylobacter coli and Campylobacter jejuni on chicken skin applied as axenic and mixed inoculums. El-Shibiny A; Connerton P; Connerton I Int J Food Microbiol; 2009 May; 131(2-3):197-202. PubMed ID: 19324444 [TBL] [Abstract][Full Text] [Related]
6. Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. Dirks BP; Dobrynin D; Fridman G; Mukhin Y; Fridman A; Quinlan JJ J Food Prot; 2012 Jan; 75(1):22-8. PubMed ID: 22221351 [TBL] [Abstract][Full Text] [Related]
7. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: analysis of a potential source of carcass contamination. Peyrat MB; Soumet C; Maris P; Sanders P Int J Food Microbiol; 2008 May; 124(2):188-94. PubMed ID: 18472175 [TBL] [Abstract][Full Text] [Related]
9. Combined steam and ultrasound treatment of broilers at slaughter: a promising intervention to significantly reduce numbers of naturally occurring campylobacters on carcasses. Musavian HS; Krebs NH; Nonboe U; Corry JE; Purnell G Int J Food Microbiol; 2014 Apr; 176():23-8. PubMed ID: 24561390 [TBL] [Abstract][Full Text] [Related]
10. Growth temperature of four Campylobacter jejuni strains influences their subsequent survival in food and water. Duffy L; Dykes GA Lett Appl Microbiol; 2006 Dec; 43(6):596-601. PubMed ID: 17083703 [TBL] [Abstract][Full Text] [Related]
11. Enhanced control of microbiological contamination of product at a large beef packing plant. Yang X; Badoni M; Youssef MK; Gill CO J Food Prot; 2012 Jan; 75(1):144-9. PubMed ID: 22221368 [TBL] [Abstract][Full Text] [Related]
12. Detection of Campylobacter jejuni from the skin of broiler chickens, ducks, squab, quail, and guinea fowl carcasses. McCrea BA; Tonooka KH; Van Worth C; Atwill ER; Schrader JS Foodborne Pathog Dis; 2008 Feb; 5(1):53-7. PubMed ID: 18260815 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Campylobacter spp. contamination in broilers from the farm to the final meat cuts by using restriction fragment length polymorphism of the polymerase chain reaction products. Takahashi R; Shahada F; Chuma T; Okamoto K Int J Food Microbiol; 2006 Aug; 110(3):240-5. PubMed ID: 16806554 [TBL] [Abstract][Full Text] [Related]
14. Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses. Gill CO; Badoni M Int J Food Microbiol; 2004 Feb; 91(1):43-50. PubMed ID: 14967559 [TBL] [Abstract][Full Text] [Related]
15. A novel method for assessing the role of air in the microbiological contamination of poultry carcasses. Burfoot D; Whyte RT; Tinker DB; Hall K; Allen VM Int J Food Microbiol; 2007 Apr; 115(1):48-52. PubMed ID: 17126440 [TBL] [Abstract][Full Text] [Related]
16. Proximate sources of bacteria on boneless loins prepared from routinely processed and detained carcasses at a pork packing plant. Gill CO; Landers C Int J Food Microbiol; 2004 Dec; 97(2):171-8. PubMed ID: 15541803 [TBL] [Abstract][Full Text] [Related]
17. Effects of lactic acid and commercial chilling processes on survival of Salmonella, Yersinia enterocolitica, and Campylobacter coli in pork variety meats. King AM; Miller RK; Castillo A; Griffin DB; Hardin MD J Food Prot; 2012 Sep; 75(9):1589-94. PubMed ID: 22947465 [TBL] [Abstract][Full Text] [Related]
18. Effects of steam and lactic acid treatments on inactivation of Listeria innocua surface-inoculated on chicken skins. Lecompte JY; Kondjoyan A; Sarter S; Portanguen S; Collignan A Int J Food Microbiol; 2008 Sep; 127(1-2):155-61. PubMed ID: 18694610 [TBL] [Abstract][Full Text] [Related]
19. Viability of multi-strain mixtures of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 inoculated into the batter or onto the surface of a soudjouk-style fermented semi-dry sausage. Porto-Fett AC; Hwang CA; Call JE; Juneja VK; Ingham SC; Ingham BH; Luchansky JB Food Microbiol; 2008 Sep; 25(6):793-801. PubMed ID: 18620971 [TBL] [Abstract][Full Text] [Related]
20. Modelling of Campylobacter survival in frozen chicken meat. Ritz M; Nauta MJ; Teunis PF; van Leusden F; Federighi M; Havelaar AH J Appl Microbiol; 2007 Sep; 103(3):594-600. PubMed ID: 17714392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]