BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17140871)

  • 1. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur.
    Vainionpää A; Korpelainen R; Sievänen H; Vihriälä E; Leppäluoto J; Jämsä T
    Bone; 2007 Mar; 40(3):604-11. PubMed ID: 17140871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of impact exercise on physical performance and cardiovascular risk factors.
    Vainionpää A; Korpelainen R; Kaikkonen H; Knip M; Leppäluoto J; Jämsä T
    Med Sci Sports Exerc; 2007 May; 39(5):756-63. PubMed ID: 17468572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration slope of exercise-induced impacts is a determinant of changes in bone density.
    Heikkinen R; Vihriälä E; Vainionpää A; Korpelainen R; Jämsä T
    J Biomech; 2007; 40(13):2967-74. PubMed ID: 17399725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daily impact score in long-term acceleration measurements of exercise.
    Ahola R; Korpelainen R; Vainionpää A; Jämsä T
    J Biomech; 2010 Jul; 43(10):1960-4. PubMed ID: 20385386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Good maintenance of high-impact activity-induced bone gain by voluntary, unsupervised exercises: An 8-month follow-up of a randomized controlled trial.
    Heinonen A; Kannus P; Sievänen H; Pasanen M; Oja P; Vuori I
    J Bone Miner Res; 1999 Jan; 14(1):125-8. PubMed ID: 9893074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A time course of bone response to jump exercise in C57BL/6J mice.
    Umemura Y; Baylink DJ; Wergedal JE; Mohan S; Srivastava AK
    J Bone Miner Metab; 2002; 20(4):209-15. PubMed ID: 12115066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual and combined effects of exercise and alendronate on bone mass and strength in ovariectomized rats.
    Fuchs RK; Shea M; Durski SL; Winters-Stone KM; Widrick J; Snow CM
    Bone; 2007 Aug; 41(2):290-6. PubMed ID: 17544352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of weight-bearing exercises on bone acquisition in prepubertal monozygotic female twins: a randomized controlled prospective study.
    Van Langendonck L; Claessens AL; Vlietinck R; Derom C; Beunen G
    Calcif Tissue Int; 2003 Jun; 72(6):666-74. PubMed ID: 14562994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lifetime loading history on cortical bone density and its distribution in middle-aged and older men.
    Bailey CA; Kukuljan S; Daly RM
    Bone; 2010 Sep; 47(3):673-80. PubMed ID: 20601299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT).
    Frotzler A; Berger M; Knecht H; Eser P
    Bone; 2008 Sep; 43(3):549-55. PubMed ID: 18567554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-course of exercise and its association with 12-month bone changes.
    Ahola R; Korpelainen R; Vainionpää A; Leppäluoto J; Jämsä T
    BMC Musculoskelet Disord; 2009 Nov; 10():138. PubMed ID: 19909496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium supplementation and weight bearing physical activity--do they have a combined effect on the bone density of pre-pubertal children?
    Ward KA; Roberts SA; Adams JE; Lanham-New S; Mughal MZ
    Bone; 2007 Oct; 41(4):496-504. PubMed ID: 17870038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone modeling response to voluntary exercise in the hindlimb of mice.
    Plochocki JH; Rivera JP; Zhang C; Ebba SA
    J Morphol; 2008 Mar; 269(3):313-8. PubMed ID: 17957711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex differences in parameters of bone strength in new recruits: beyond bone density.
    Evans RK; Negus C; Antczak AJ; Yanovich R; Israeli E; Moran DS
    Med Sci Sports Exerc; 2008 Nov; 40(11 Suppl):S645-53. PubMed ID: 18849870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft.
    Högler W; Blimkie CJ; Cowell CT; Inglis D; Rauch F; Kemp AF; Wiebe P; Duncan CS; Farpour-Lambert N; Woodhead HJ
    Bone; 2008 May; 42(5):982-9. PubMed ID: 18337201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise loading and cortical bone distribution at the tibial shaft.
    Rantalainen T; Nikander R; Daly RM; Heinonen A; Sievänen H
    Bone; 2011 Apr; 48(4):786-91. PubMed ID: 21122824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone loss and mechanical properties of tibia in spinal cord injured men.
    Dionyssiotis Y; Trovas G; Galanos A; Raptou P; Papaioannou N; Papagelopoulos P; Petropoulou K; Lyritis GP
    J Musculoskelet Neuronal Interact; 2007; 7(1):62-8. PubMed ID: 17396008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of bone mass and mechanical properties after short-term cessation of high impact exercise in rats.
    Singh R; Umemura Y; Honda A; Nagasawa S
    Int J Sports Med; 2002 Feb; 23(2):77-81. PubMed ID: 11842352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia.
    Fritton JC; Myers ER; Wright TM; van der Meulen MC
    Bone; 2005 Jun; 36(6):1030-8. PubMed ID: 15878316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise for optimising peak bone mass in women.
    Bailey CA; Brooke-Wavell K
    Proc Nutr Soc; 2008 Feb; 67(1):9-18. PubMed ID: 18234127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.