These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17141224)

  • 1. Identification of F-box proteins that are involved in resistance to methylmercury in Saccharomyces cerevisiae.
    Hwang GW; Ishida Y; Naganuma A
    FEBS Lett; 2006 Dec; 580(30):6813-8. PubMed ID: 17141224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of substrates of F-box protein involved in methylmercury toxicity in yeast cells.
    Lee JY; Ishida Y; Kuge S; Naganuma A; Hwang GW
    FEBS Lett; 2015 Sep; 589(19 Pt B):2720-5. PubMed ID: 26297823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the novel F-box protein Ymr258c confers resistance to methylmercury in Saccharomyces cerevisiae.
    Hwang GW; Wada N; Kuge S; Naganuma A
    J Toxicol Sci; 2009 Oct; 34(4):413-6. PubMed ID: 19652464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of Rad23 confers resistance to methylmercury in saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins.
    Hwang GW; Sasaki D; Naganuma A
    Mol Pharmacol; 2005 Oct; 68(4):1074-8. PubMed ID: 15998872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of Bop3 confers resistance to methylmercury in Saccharomyces cerevisiae through interaction with other proteins such as Fkh1, Rts1, and Msn2.
    Hwang GW; Furuoya Y; Hiroshima A; Furuchi T; Naganuma A
    Biochem Biophys Res Commun; 2005 May; 330(2):378-85. PubMed ID: 15796894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitin-proteasome system as a factor that determine the sensitivity to methylmercury.
    Hwang GW
    Yakugaku Zasshi; 2007 Mar; 127(3):463-8. PubMed ID: 17329932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin-conjugating enzyme Cdc34 mediates methylmercury resistance in Saccharomyces cerevisiae by increasing Whi2 degradation.
    Hwang GW; Ogiwara Y; Takahashi T; Naganuma A
    J Toxicol Sci; 2012; 37(6):1283-6. PubMed ID: 23208445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Genetic toxicity of methylmercuric chloride (CH3HgCl) on mitochondria of Saccharomyces cerevisiae].
    Phipps J; Miller DR
    Can J Microbiol; 1983 Sep; 29(9):1149-53. PubMed ID: 6360319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury.
    Hwang GW; Furuchi T; Naganuma A
    FASEB J; 2002 May; 16(7):709-11. PubMed ID: 11978736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of deubiquitinating enzymes involved in methylmercury toxicity in Saccharomyces cerevisiae.
    Hwang GW; Kimura Y; Takahashi T; Lee JY; Naganuma A
    J Toxicol Sci; 2012; 37(6):1287-90. PubMed ID: 23208446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the ubiquitin-conjugating enzyme Ubc2 confers resistance to methylmercury in budding yeast by promoting Whi2 degradation.
    Hwang GW; Mastuyama F; Takahashi T; Lee JY; Naganuma A
    J Toxicol Sci; 2013; 38(2):301-3. PubMed ID: 23535409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of the ubiquitin-conjugating enzyme Cdc34 confers resistance to methylmercury in Saccharomyces cerevisiae.
    Furuchi T; Hwang GW; Naganuma A
    Mol Pharmacol; 2002 Apr; 61(4):738-41. PubMed ID: 11901211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F-box protein Mdm30p.
    Ota K; Kito K; Okada S; Ito T
    Genes Cells; 2008 Oct; 13(10):1075-85. PubMed ID: 18775025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel role for Bsd2 in the resistance of yeast to adriamycin.
    Takahashi T; Furuchi T; Naganuma A
    J Cell Physiol; 2005 Jan; 202(1):100-4. PubMed ID: 15389553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The F-box protein, Ufo1, maintains genome stability by recruiting the yeast mating switch endonuclease, Ho, for rapid proteasome degradation.
    Kaplun L; Ivantsiv Y; Bakhrat A; Tzirkin R; Baranes K; Shabek N; Raveh D
    Isr Med Assoc J; 2006 Apr; 8(4):246-8. PubMed ID: 16671359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic protein UNC-13 interacts with an F-box protein that may target it for degradation by proteasomes.
    Polinsky C; Houston C; Vado J; Shaikh A; Kohn RE
    Acta Biochim Pol; 2006; 53(1):145-8. PubMed ID: 16496042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity.
    Hwang GW; Murai Y; Takahashi T; Naganuma A
    Sci Rep; 2014 Jul; 4():5888. PubMed ID: 25074250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whi2 enhances methylmercury toxicity in yeast via inhibition of Akr1 palmitoyltransferase activity.
    Hwang GW; Fukumitsu T; Ogiwara Y; Takahashi T; Miura N; Kuge S; Naganuma A
    Biochim Biophys Acta; 2016 Jun; 1860(6):1326-33. PubMed ID: 27015763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.