These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17141283)

  • 1. Functional characterization of the rice kaurene synthase-like gene family.
    Xu M; Wilderman PR; Morrone D; Xu J; Roy A; Margis-Pinheiro M; Upadhyaya NM; Coates RM; Peters RJ
    Phytochemistry; 2007 Feb; 68(3):312-26. PubMed ID: 17141283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon.
    Toyomasu T; Miyamoto K; Shenton MR; Sakai A; Sugawara C; Horie K; Kawaide H; Hasegawa M; Chuba M; Mitsuhashi W; Yamane H; Kurata N; Okada K
    Biochem Biophys Res Commun; 2016 Nov; 480(3):402-408. PubMed ID: 27771250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rice ent-KAURENE SYNTHASE LIKE 2 encodes a functional ent-beyerene synthase.
    Tezuka D; Ito A; Mitsuhashi W; Toyomasu T; Imai R
    Biochem Biophys Res Commun; 2015 May; 460(3):766-71. PubMed ID: 25824047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unexpected diterpene cyclase from rice: functional identification of a stemodene synthase.
    Morrone D; Jin Y; Xu M; Choi SY; Coates RM; Peters RJ
    Arch Biochem Biophys; 2006 Apr; 448(1-2):133-40. PubMed ID: 16256063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of diterpene synthase genes in the wild rice species Oryza brachyatha provides evolutionary insight into rice phytoalexin biosynthesis.
    Toyomasu T; Goda C; Sakai A; Miyamoto K; Shenton MR; Tomiyama S; Mitsuhashi W; Yamane H; Kurata N; Okada K
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1221-1227. PubMed ID: 30005875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibberellin-biosynthetic ent-kaurene synthases in higher plants do not require their non-catalytic domains for the catalysis.
    Oshikawa S; Naoe A; Moriya T; Hasegawa Y; Nakasato M; Ogawa Y; Wakabayashi H; Itoh A; Takeda-Kimura Y; Miyazaki S; Kawaide H; Toyomasu T
    Biochem J; 2024 Jun; 481(12):779-791. PubMed ID: 38829839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis.
    Wilderman PR; Xu M; Jin Y; Coates RM; Peters RJ
    Plant Physiol; 2004 Aug; 135(4):2098-105. PubMed ID: 15299118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice.
    Nemoto T; Cho EM; Okada A; Okada K; Otomo K; Kanno Y; Toyomasu T; Mitsuhashi W; Sassa T; Minami E; Shibuya N; Nishiyama M; Nojiri H; Yamane H
    FEBS Lett; 2004 Jul; 571(1-3):182-6. PubMed ID: 15280039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the single amino acid involved in quenching the ent-kauranyl cation by a water molecule in ent-kaurene synthase of Physcomitrella patens.
    Kawaide H; Hayashi K; Kawanabe R; Sakigi Y; Matsuo A; Natsume M; Nozaki H
    FEBS J; 2011 Jan; 278(1):123-33. PubMed ID: 21122070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of cyclic diterpene hydrocarbons in rice cell suspensions: conversion of 9,10-syn-labda-8(17),13-dienyl diphosphate to 9beta-pimara-7,15-diene and stemar-13-ene.
    Mohan RS; Yee NK; Coates RM; Ren YY; Stamenkovic P; Mendez I; West CA
    Arch Biochem Biophys; 1996 Jun; 330(1):33-47. PubMed ID: 8651702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of wheat ent-kaurene(-like) synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals.
    Zhou K; Xu M; Tiernan M; Xie Q; Toyomasu T; Sugawara C; Oku M; Usui M; Mitsuhashi W; Chono M; Chandler PM; Peters RJ
    Phytochemistry; 2012 Dec; 84():47-55. PubMed ID: 23009879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum.
    Morrone D; Chambers J; Lowry L; Kim G; Anterola A; Bender K; Peters RJ
    FEBS Lett; 2009 Jan; 583(2):475-80. PubMed ID: 19121310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens.
    Hayashi K; Kawaide H; Notomi M; Sakigi Y; Matsuo A; Nozaki H
    FEBS Lett; 2006 Nov; 580(26):6175-81. PubMed ID: 17064690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis.
    Otomo K; Kenmoku H; Oikawa H; König WA; Toshima H; Mitsuhashi W; Yamane H; Sassa T; Toyomasu T
    Plant J; 2004 Sep; 39(6):886-93. PubMed ID: 15341631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a rice gene family encoding type-A diterpene cyclases.
    Kanno Y; Otomo K; Kenmoku H; Mitsuhashi W; Yamane H; Oikawa H; Toshima H; Matsuoka M; Sassa T; Toyomasu T
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1702-10. PubMed ID: 16861806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa).
    Wang D; Pei K; Fu Y; Sun Z; Li S; Liu H; Tang K; Han B; Tao Y
    Gene; 2007 Jun; 394(1-2):13-24. PubMed ID: 17408882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Diversity of Diterpene Synthases in the Biofuel Crop Switchgrass.
    Pelot KA; Chen R; Hagelthorn DM; Young CA; Addison JB; Muchlinski A; Tholl D; Zerbe P
    Plant Physiol; 2018 Sep; 178(1):54-71. PubMed ID: 30008447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chymotrypsin protease inhibitor gene family in rice: Genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes.
    Singh A; Sahi C; Grover A
    Gene; 2009 Jan; 428(1-2):9-19. PubMed ID: 18952157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Identification and Expression Analysis of
    Teng Y; Wang Y; Zhang Y; Xie Q; Zeng Q; Cai M; Chen T
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice.
    Yuan JS; Köllner TG; Wiggins G; Grant J; Degenhardt J; Chen F
    Plant J; 2008 Aug; 55(3):491-503. PubMed ID: 18433439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.