These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 17141444)
81. Amide- and bis-amide-linked highly potent and broadly active antifungal agents for the treatment of invasive fungal infections- towards the discovery of pre-clinical development candidate FC12406. Baugh SDP; Chaly A; Weaver DG; Whitman DB; Pelletier JC; Bian H; Freeman KB; Reitz AB; Scott RW Med Chem Res; 2023 May; ():1-17. PubMed ID: 37362318 [TBL] [Abstract][Full Text] [Related]
83. The Activity of PHMB and Other Guanidino Containing Compounds against Ratnayake D; Ansah M; Al Ani E; Heaselgrave W Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889094 [TBL] [Abstract][Full Text] [Related]
84. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana. Atanasov KE; Barboza-Barquero L; Tiburcio AF; Alcázar R Front Plant Sci; 2016; 7():401. PubMed ID: 27092150 [TBL] [Abstract][Full Text] [Related]
85. Novel Macrocyclic Amidinoureas: Potent Non-Azole Antifungals Active against Wild-Type and Resistant Candida Species. Sanguinetti M; Sanfilippo S; Castagnolo D; Sanglard D; Posteraro B; Donzellini G; Botta M ACS Med Chem Lett; 2013 Sep; 4(9):852-7. PubMed ID: 24900759 [TBL] [Abstract][Full Text] [Related]
86. Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava. Marina M; Maiale SJ; Rossi FR; Romero MF; Rivas EI; Gárriz A; Ruiz OA; Pieckenstain FL Plant Physiol; 2008 Aug; 147(4):2164-78. PubMed ID: 18583531 [TBL] [Abstract][Full Text] [Related]
87. LC/ESI/MS method for the quantitative detection of guazatine residues in cereals. Dreassi E; Zizzari AT; Zanfini A; Corbini G; Botta M J Agric Food Chem; 2007 Aug; 55(17):6850-6. PubMed ID: 17650002 [TBL] [Abstract][Full Text] [Related]
88. Nuclear magnetic resonance and liquid chromatography-mass spectrometry combined with an incompleted separation strategy for identifying the natural products in crude extract. Dai D; He J; Sun R; Zhang R; Aisa HA; Abliz Z Anal Chim Acta; 2009 Jan; 632(2):221-8. PubMed ID: 19110097 [TBL] [Abstract][Full Text] [Related]
89. Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection. De Baere S; De Backer P Anal Chim Acta; 2007 Mar; 586(1-2):319-25. PubMed ID: 17386730 [TBL] [Abstract][Full Text] [Related]
90. Rapid, sensitive and simultaneous determination of fluorescence-labeled polyamines in human hair by high-pressure liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry. Sugiura K; Min JZ; Toyo'oka T; Inagaki S J Chromatogr A; 2008 Sep; 1205(1-2):94-102. PubMed ID: 18755466 [TBL] [Abstract][Full Text] [Related]
91. Analysis of guazatine mixture by LC and LC-MS and antimycotic activity determination of principal components. Dreassi E; Zizzari AT; D'Arezzo S; Visca P; Botta M J Pharm Biomed Anal; 2007 Mar; 43(4):1499-506. PubMed ID: 17141444 [TBL] [Abstract][Full Text] [Related]
92. Herbal medicine analysis by liquid chromatography/time-of-flight mass spectrometry. Zhou JL; Qi LW; Li P J Chromatogr A; 2009 Oct; 1216(44):7582-94. PubMed ID: 19501368 [TBL] [Abstract][Full Text] [Related]