BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 17141499)

  • 1. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion.
    Li J; Henriksson G; Gellerstedt G
    Bioresour Technol; 2007 Nov; 98(16):3061-8. PubMed ID: 17141499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals.
    Li J; Gellerstedt G; Toven K
    Bioresour Technol; 2009 May; 100(9):2556-61. PubMed ID: 19157871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF.
    Cantarella M; Cantarella L; Gallifuoco A; Spera A; Alfani F
    Biotechnol Prog; 2004; 20(1):200-6. PubMed ID: 14763843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing the liquid fuel yield in a biorefining process.
    Zhang B; von Keitz M; Valentas K
    Biotechnol Bioeng; 2008 Dec; 101(5):903-12. PubMed ID: 18781691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips.
    Panagiotopoulos IA; Chandra RP; Saddler JN
    Bioresour Technol; 2013 Feb; 130():570-7. PubMed ID: 23334012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate reactions during high-temperature steam treatment of aspen wood.
    Li J; Henriksson G; Gellerstedt G
    Appl Biochem Biotechnol; 2005 Jun; 125(3):175-88. PubMed ID: 15917581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips.
    Martin-Sampedro R; Capanema EA; Hoeger I; Villar JC; Rojas OJ
    J Agric Food Chem; 2011 Aug; 59(16):8761-9. PubMed ID: 21749069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homolytic and Heterolytic Cleavage of β-Ether Linkages in Hardwood Lignin by Steam Explosion.
    Obame SN; Ziegler-Devin I; Safou-Tchima R; Brosse N
    J Agric Food Chem; 2019 May; 67(21):5989-5996. PubMed ID: 31062970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction kinetics of the hydrothermal treatment of lignin.
    Zhang B; Huang HJ; Ramaswamy S
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):119-31. PubMed ID: 18401758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst.
    Lucas M; Hanson SK; Wagner GL; Kimball DB; Rector KD
    Bioresour Technol; 2012 Sep; 119():174-80. PubMed ID: 22728198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.
    Duncan S; Jing Q; Katona A; Kazlauskas RJ; Schilling J; Tschirner U; Aldajani WW
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1637-52. PubMed ID: 19484411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst.
    Cox BJ; Ekerdt JG
    Bioresour Technol; 2012 Aug; 118():584-8. PubMed ID: 22698446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.
    Zeng J; Tong Z; Wang L; Zhu JY; Ingram L
    Bioresour Technol; 2014 Feb; 154():274-81. PubMed ID: 24412855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification.
    El Hage R; Chrusciel L; Desharnais L; Brosse N
    Bioresour Technol; 2010 Dec; 101(23):9321-9. PubMed ID: 20655207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis.
    Chandra RP; Chu Q; Hu J; Zhong N; Lin M; Lee JS; Saddler J
    Bioresour Technol; 2016 Jan; 199():135-141. PubMed ID: 26391968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics.
    Cullis IF; Saddler JN; Mansfield SD
    Biotechnol Bioeng; 2004 Feb; 85(4):413-21. PubMed ID: 14755559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover.
    Ohgren K; Bura R; Saddler J; Zacchi G
    Bioresour Technol; 2007 Sep; 98(13):2503-10. PubMed ID: 17113771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized delignification of wood-derived lignocellulosics for improved enzymatic hydrolysis.
    Cullis IF; Mansfield SD
    Biotechnol Bioeng; 2010 Aug; 106(6):884-93. PubMed ID: 20506220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of the aspen lignin structure during integrated fractionation process of autohydrolysis and formic acid delignification.
    Shao Z; Fu Y; Wang P; Zhang Y; Qin M; Li X; Zhang F
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1727-1737. PubMed ID: 33058978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.
    Martin-Sampedro R; Eugenio ME; Moreno JA; Revilla E; Villar JC
    Bioresour Technol; 2014 Feb; 153():236-44. PubMed ID: 24368272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.