BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17141505)

  • 1. Sirtuins: a conserved key unlocking AceCS activity.
    North BJ; Sinclair DA
    Trends Biochem Sci; 2007 Jan; 32(1):1-4. PubMed ID: 17141505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved metabolic regulatory functions of sirtuins.
    Schwer B; Verdin E
    Cell Metab; 2008 Feb; 7(2):104-12. PubMed ID: 18249170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.
    Schwer B; Bunkenborg J; Verdin RO; Andersen JS; Verdin E
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10224-10229. PubMed ID: 16788062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetate metabolism and aging: An emerging connection.
    Shimazu T; Hirschey MD; Huang JY; Ho LT; Verdin E
    Mech Ageing Dev; 2010; 131(7-8):511-6. PubMed ID: 20478325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
    Hallows WC; Lee S; Denu JM
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10230-10235. PubMed ID: 16790548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leucine-684: A conserved residue of an AMP-acetyl CoA synthetase (AceCS) from Leishmania donovani is involved in substrate recognition, catalysis and acetylation.
    Soumya N; Tandan H; Damre MV; Gangwal RP; Sangamwar AT; Singh S
    Gene; 2016 Apr; 580(2):125-133. PubMed ID: 26794803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism.
    Hirschey MD; Shimazu T; Huang JY; Schwer B; Verdin E
    Cold Spring Harb Symp Quant Biol; 2011; 76():267-77. PubMed ID: 22114326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-lysine propionylation controls the activity of propionyl-CoA synthetase.
    Garrity J; Gardner JG; Hawse W; Wolberger C; Escalante-Semerena JC
    J Biol Chem; 2007 Oct; 282(41):30239-45. PubMed ID: 17684016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2.
    Hirschey MD; Shimazu T; Capra JA; Pollard KS; Verdin E
    Aging (Albany NY); 2011 Jun; 3(6):635-42. PubMed ID: 21701047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing calorie restriction to evaluate the role of sirtuins in healthspan and lifespan of mice.
    Curtis J; de Cabo R
    Methods Mol Biol; 2013; 1077():303-11. PubMed ID: 24014415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine.
    Starai VJ; Celic I; Cole RN; Boeke JD; Escalante-Semerena JC
    Science; 2002 Dec; 298(5602):2390-2. PubMed ID: 12493915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of human SIRT3 displaying substrate-induced conformational changes.
    Jin L; Wei W; Jiang Y; Peng H; Cai J; Mao C; Dai H; Choy W; Bemis JE; Jirousek MR; Milne JC; Westphal CH; Perni RB
    J Biol Chem; 2009 Sep; 284(36):24394-405. PubMed ID: 19535340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase.
    Starai VJ; Takahashi H; Boeke JD; Escalante-Semerena JC
    Curr Opin Microbiol; 2004 Apr; 7(2):115-9. PubMed ID: 15063846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
    Renilla S; Bernal V; Fuhrer T; Castaño-Cerezo S; Pastor JM; Iborra JL; Sauer U; Cánovas M
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2109-24. PubMed ID: 21881893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif.
    Soumya N; Kumar IS; Shivaprasad S; Gorakh LN; Dinesh N; Swamy KK; Singh S
    Int J Biol Macromol; 2015 Apr; 75():364-72. PubMed ID: 25660655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1.
    Sahar S; Masubuchi S; Eckel-Mahan K; Vollmer S; Galla L; Ceglia N; Masri S; Barth TK; Grimaldi B; Oluyemi O; Astarita G; Hallows WC; Piomelli D; Imhof A; Baldi P; Denu JM; Sassone-Corsi P
    J Biol Chem; 2014 Feb; 289(9):6091-7. PubMed ID: 24425865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and partial characterization of acetyl-coA synthetase in rat liver mitochondria.
    Yamashita H; Fukuura A; Nakamura T; Kaneyuki T; Kimoto M; Hiemori M; Tsuji H
    J Nutr Sci Vitaminol (Tokyo); 2002 Oct; 48(5):359-64. PubMed ID: 12656208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increase in activity during calorie restriction requires Sirt1.
    Chen D; Steele AD; Lindquist S; Guarente L
    Science; 2005 Dec; 310(5754):1641. PubMed ID: 16339438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirtuins in aging and disease.
    Guarente L
    Cold Spring Harb Symp Quant Biol; 2007; 72():483-8. PubMed ID: 18419308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis.
    Gardner JG; Grundy FJ; Henkin TM; Escalante-Semerena JC
    J Bacteriol; 2006 Aug; 188(15):5460-8. PubMed ID: 16855235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.