These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 17141613)

  • 1. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D
    Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae.
    Reyes-Prieto A; Bhattacharya D
    Mol Biol Evol; 2007 Nov; 24(11):2358-61. PubMed ID: 17827169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal genomics: exploring the imprint of endosymbiosis.
    Archibald JM
    Curr Biol; 2006 Dec; 16(24):R1033-5. PubMed ID: 17174910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phylogenomic approach for studying plastid endosymbiosis.
    Moustafa A; Chan CX; Danforth M; Zear D; Ahmed H; Jadhav N; Savage T; Bhattacharya D
    Genome Inform; 2008; 21():165-76. PubMed ID: 19425156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.
    Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D
    Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants.
    Price DC; Chan CX; Yoon HS; Yang EC; Qiu H; Weber AP; Schwacke R; Gross J; Blouin NA; Lane C; Reyes-Prieto A; Durnford DG; Neilson JA; Lang BF; Burger G; Steiner JM; Löffelhardt W; Meuser JE; Posewitz MC; Ball S; Arias MC; Henrissat B; Coutinho PM; Rensing SA; Symeonidi A; Doddapaneni H; Green BR; Rajah VD; Boore J; Bhattacharya D
    Science; 2012 Feb; 335(6070):843-7. PubMed ID: 22344442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae.
    Yoon HS; Hackett JD; Van Dolah FM; Nosenko T; Lidie KL; Bhattacharya D
    Mol Biol Evol; 2005 May; 22(5):1299-308. PubMed ID: 15746017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing evolution: gene transfer from plastids to the nucleus.
    Bock R; Timmis JN
    Bioessays; 2008 Jun; 30(6):556-66. PubMed ID: 18478535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida.
    Smith DR; Jackson CJ; Reyes-Prieto A
    Mol Phylogenet Evol; 2014 Oct; 79():380-4. PubMed ID: 25017510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins.
    Bodył A; Mackiewicz P; Stiller JW
    Plant Biol (Stuttg); 2010 Jul; 12(4):639-49. PubMed ID: 20636907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the nucleus-encoded chloroplast division genes and proteins regulated by the algal cell cycle.
    Miyagishima SY; Suzuki K; Okazaki K; Kabeya Y
    Mol Biol Evol; 2012 Oct; 29(10):2957-70. PubMed ID: 22490821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host origin of plastid solute transporters in the first photosynthetic eukaryotes.
    Tyra HM; Linka M; Weber AP; Bhattacharya D
    Genome Biol; 2007; 8(10):R212. PubMed ID: 17919328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.