BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 17141613)

  • 1. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D
    Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae.
    Reyes-Prieto A; Bhattacharya D
    Mol Biol Evol; 2007 Nov; 24(11):2358-61. PubMed ID: 17827169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal genomics: exploring the imprint of endosymbiosis.
    Archibald JM
    Curr Biol; 2006 Dec; 16(24):R1033-5. PubMed ID: 17174910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phylogenomic approach for studying plastid endosymbiosis.
    Moustafa A; Chan CX; Danforth M; Zear D; Ahmed H; Jadhav N; Savage T; Bhattacharya D
    Genome Inform; 2008; 21():165-76. PubMed ID: 19425156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.
    Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D
    Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants.
    Price DC; Chan CX; Yoon HS; Yang EC; Qiu H; Weber AP; Schwacke R; Gross J; Blouin NA; Lane C; Reyes-Prieto A; Durnford DG; Neilson JA; Lang BF; Burger G; Steiner JM; Löffelhardt W; Meuser JE; Posewitz MC; Ball S; Arias MC; Henrissat B; Coutinho PM; Rensing SA; Symeonidi A; Doddapaneni H; Green BR; Rajah VD; Boore J; Bhattacharya D
    Science; 2012 Feb; 335(6070):843-7. PubMed ID: 22344442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae.
    Yoon HS; Hackett JD; Van Dolah FM; Nosenko T; Lidie KL; Bhattacharya D
    Mol Biol Evol; 2005 May; 22(5):1299-308. PubMed ID: 15746017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing evolution: gene transfer from plastids to the nucleus.
    Bock R; Timmis JN
    Bioessays; 2008 Jun; 30(6):556-66. PubMed ID: 18478535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida.
    Smith DR; Jackson CJ; Reyes-Prieto A
    Mol Phylogenet Evol; 2014 Oct; 79():380-4. PubMed ID: 25017510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins.
    Bodył A; Mackiewicz P; Stiller JW
    Plant Biol (Stuttg); 2010 Jul; 12(4):639-49. PubMed ID: 20636907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the nucleus-encoded chloroplast division genes and proteins regulated by the algal cell cycle.
    Miyagishima SY; Suzuki K; Okazaki K; Kabeya Y
    Mol Biol Evol; 2012 Oct; 29(10):2957-70. PubMed ID: 22490821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host origin of plastid solute transporters in the first photosynthetic eukaryotes.
    Tyra HM; Linka M; Weber AP; Bhattacharya D
    Genome Biol; 2007; 8(10):R212. PubMed ID: 17919328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.