BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17141795)

  • 1. How the capillary burst microvalve works.
    Cho H; Kim HY; Kang JY; Kim TS
    J Colloid Interface Sci; 2007 Feb; 306(2):379-85. PubMed ID: 17141795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.
    Zhang Q; Zhang P; Su Y; Mou C; Zhou T; Yang M; Xu J; Ma B
    Lab Chip; 2014 Dec; 14(24):4599-603. PubMed ID: 25231434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.
    Kazemzadeh A; Ganesan P; Ibrahim F; He S; Madou MJ
    PLoS One; 2013; 8(9):e73002. PubMed ID: 24069169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrowetting microvalve: numerical simulation.
    Mohseni K; Dolatabadi A
    Ann N Y Acad Sci; 2006 Sep; 1077():415-25. PubMed ID: 17124138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms.
    Thio TH; Soroori S; Ibrahim F; Al-Faqheri W; Soin N; Kulinsky L; Madou M
    Med Biol Eng Comput; 2013 May; 51(5):525-35. PubMed ID: 23292292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugo-pneumatic valve for metering of highly wetting liquids on centrifugal microfluidic platforms.
    Mark D; Metz T; Haeberle S; Lutz S; Ducrée J; Zengerle R; von Stetten F
    Lab Chip; 2009 Dec; 9(24):3599-603. PubMed ID: 20024042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvalve thickness and topography measurements in microfluidic devices by white-light confocal microscopy.
    Li S; Thorsen T; Xu Z; Fang ZP; Zhao J; Yoon SF
    Appl Opt; 2009 Sep; 48(27):5088-94. PubMed ID: 19767923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvalve-actuated precise control of individual droplets in microfluidic devices.
    Zeng S; Li B; Su X; Qin J; Lin B
    Lab Chip; 2009 May; 9(10):1340-3. PubMed ID: 19417898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the condition for differential electrophoretic transport at a channel entrance.
    Pacheco JR; Chen KP; Hayes MA
    Electrophoresis; 2007 Apr; 28(7):1027-35. PubMed ID: 17311244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Effective Capillary Valve Based on Micro-hole Array for Microfluidic Systems.
    Xie Y; You H; Gao Z; Huang Z; Yang M
    Anal Sci; 2018 Nov; 34(11):1323-1327. PubMed ID: 30101831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery.
    Zhang X; Oseyemi AE
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obstructed breakup of slender drops in a microfluidic T junction.
    Leshansky AM; Afkhami S; Jullien MC; Tabeling P
    Phys Rev Lett; 2012 Jun; 108(26):264502. PubMed ID: 23004987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic flow injection system for DNA assay with fluids driven by an on-chip integrated pump based on capillary and evaporation effects.
    Xu ZR; Zhong CH; Guan YX; Chen XW; Wang JH; Fang ZL
    Lab Chip; 2008 Oct; 8(10):1658-63. PubMed ID: 18813387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microvalve-assisted patterning platform for measuring cellular dynamics based on 3D cell culture.
    Kim MS; Lee W; Kim YC; Park JK
    Biotechnol Bioeng; 2008 Dec; 101(5):1005-13. PubMed ID: 18942775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple actuation microvalves in wax microfluidics.
    Díaz-González M; Fernández-Sánchez C; Baldi A
    Lab Chip; 2016 Oct; 16(20):3969-3976. PubMed ID: 27714007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drop mixing in a microchannel for lab-on-a-chip platforms.
    Rhee M; Burns MA
    Langmuir; 2008 Jan; 24(2):590-601. PubMed ID: 18069861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of dynamic chemical signals with microfluidic C-DACs.
    Chen L; Azizi F; Mastrangelo CH
    Lab Chip; 2007 Jul; 7(7):850-5. PubMed ID: 17594003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A screw-actuated pneumatic valve for portable, disposable microfluidics.
    Zheng Y; Dai W; Wu H
    Lab Chip; 2009 Feb; 9(3):469-72. PubMed ID: 19156298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.