These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17141867)

  • 61. Estuarine sediment acute toxicity testing with the European amphipod Corophium multisetosum Stock, 1952.
    Ré A; Freitas R; Sampaio L; Rodrigues AM; Quintino V
    Chemosphere; 2009 Sep; 76(10):1323-33. PubMed ID: 19595433
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes.
    Bejgarn S; MacLeod M; Bogdal C; Breitholtz M
    Chemosphere; 2015 Aug; 132():114-9. PubMed ID: 25828916
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Method for assessing the chronic toxicity of marine and estuarine sediment-associated contaminants using the amphipod Corophium volutator.
    Scarlett A; Rowland SJ; Canty M; Smith EL; Galloway TS
    Mar Environ Res; 2007 Jun; 63(5):457-70. PubMed ID: 17291579
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A whole sample toxicity assessment to evaluate the sub-lethal toxicity of water and sediment elutriates from a lake exposed to diffuse pollution.
    Abrantes N; Pereira R; de Figueiredo DR; Marques CR; Pereira MJ; Gonçalves F
    Environ Toxicol; 2009 Jun; 24(3):259-70. PubMed ID: 18655178
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Outdoor weathering and dissolution of TNT and Tritonal.
    Taylor S; Lever JH; Fadden J; Perron N; Packer B
    Chemosphere; 2009 Nov; 77(10):1338-45. PubMed ID: 19846196
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda.
    Sánchez-Bayo F
    Environ Pollut; 2006 Feb; 139(3):385-420. PubMed ID: 16111793
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physical, chemical and microbiological characterization of the intertidal sediments of Pereque Beach, Guarujá (SP), Brazil.
    de Oliveira AJ; Hollnagel HC; Lima Mesquita Hde S; Fontes RF
    Mar Pollut Bull; 2007 Jul; 54(7):921-7. PubMed ID: 17467013
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation.
    Zhao Q; Ye Z; Zhang M
    Chemosphere; 2010 Aug; 80(8):947-50. PubMed ID: 20510431
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 2,4,6-trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589.
    Jain MR; Zinjarde SS; Deobagkar DD; Deobagkar DN
    Mar Pollut Bull; 2004 Nov; 49(9-10):783-8. PubMed ID: 15530522
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sedimentation rates and erosion processes in the lagoon of Venice.
    Sfriso A; Facca C; Marcomini A
    Environ Int; 2005 Sep; 31(7):983-92. PubMed ID: 16083960
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms.
    Comber SD; Conrad AU; Höss S; Webb S; Marshall S
    Environ Pollut; 2006 Nov; 144(2):661-8. PubMed ID: 16546309
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Degradation of 2,4,6-trinitrotoluene by selected helophytes.
    Nepovim A; Hebner A; Soudek P; Gerth A; Thomas H; Smrcek S; Vanek T
    Chemosphere; 2005 Sep; 60(10):1454-61. PubMed ID: 16054915
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experimental evidence for in situ natural attenuation of 2,4- and 2,6-dinitrotoluene in marine sediment.
    Yang H; Halasz A; Zhao JS; Monteil-Rivera F; Hawari J
    Chemosphere; 2008 Jan; 70(5):791-9. PubMed ID: 17765284
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics.
    Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS
    Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.
    Besser JM; Brumbaugh WG; Allert AL; Poulton BC; Schmitt CJ; Ingersoll CG
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):516-26. PubMed ID: 18603298
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality.
    Buttino I; Vitiello V; Macchia S; Scuderi A; Pellegrini D
    Ecotoxicol Environ Saf; 2018 Mar; 149():1-9. PubMed ID: 29145160
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Relative sensitivity of hyporheic copepods to chemicals.
    Di Marzio WD; Castaldo D; Pantani C; Di Cioccio A; Di Lorenzo T; Sáenz ME; Galassi DM
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):488-91. PubMed ID: 19005609
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A general integrated ecotoxicological method for marine sediment quality assessment: application to sediments from littoral ecosystems on Southern Spain's Atlantic coast.
    Usero J; Morillo J; El Bakouri H
    Mar Pollut Bull; 2008 Dec; 56(12):2027-36. PubMed ID: 18817935
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Distribution and ecological relevance of fine sediments in organic-enriched lagoons: the case study of the Cabras lagoon (Sardinia, Italy).
    Magni P; De Falco G; Como S; Casu D; Floris A; Petrov AN; Castelli A; Perilli A
    Mar Pollut Bull; 2008 Mar; 56(3):549-64. PubMed ID: 18234238
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: System description and proof of concept.
    Burton GA; Rosen G; Chadwick DB; Greenberg MS; Taulbee WK; Lotufo GR; Reible DD
    Environ Pollut; 2012 Mar; 162():449-56. PubMed ID: 22182967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.