BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 171419)

  • 1. Analysis of the allosteric basis for positive and negative co-operativity and half-of-the-sites reactivity in yeast and rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    Herzfeld J; Schlesinger PA
    J Mol Biol; 1975 Oct; 97(4):483-517. PubMed ID: 171419
    [No Abstract]   [Full Text] [Related]  

  • 2. Relationship between structure and chemical reactivity in D-glyceraldehyde 3-phosphate dehydrogenase. Trinitrophenylation of the lysine residues in yeast, sturgeon and rabbit muscle enzyme.
    Nakano M; Foucault G; Pudles J
    J Mol Biol; 1976 Aug; 105(2):275-91. PubMed ID: 184288
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure-function studies on glyceraldehyde 3-phosphate dehydrogenase. IV. Subunit interactions of the rabbit muscle and yeast enzymes.
    Fensleau A
    J Biol Chem; 1972 Feb; 247(4):1074-9. PubMed ID: 4334489
    [No Abstract]   [Full Text] [Related]  

  • 4. Pseudoconservative transition: a two-state model for the co-operative behavior of oligomeric proteins.
    Viratelle OM; Seydoux FJ
    J Mol Biol; 1975 Feb; 92(2):193-205. PubMed ID: 167173
    [No Abstract]   [Full Text] [Related]  

  • 5. [Comparative study of glyceraldehyde-3-phosphate dehydrogenases isolated from rabbit skeletal muscles and baker's yeast using cationic fluorescent probes].
    Klichko VI; Ivanov MV; Nagradova NK
    Biokhimiia; 1986 Sep; 51(9):1465-75. PubMed ID: 3533163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new fluorescent probe for the study of the allosteric properties of D-glyceraldehyde 3-phosphate dehydrogenase.
    Tsou CL; Xu GQ; Zhou JM; Zhao KY
    Biochem Soc Trans; 1983 Aug; 11(4):425-9. PubMed ID: 6352362
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of lysine-183 in D-glyceraldehyde-3-phosphate dehydrogenases. Properties of the N-acetylated yeast, sturgeon muscle and rabbit muscle enzymes.
    Foucault G; Nakano M; Pudles J
    Eur J Biochem; 1978 Feb; 83(1):113-23. PubMed ID: 342241
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of cyclic 3',5'-adenosine monophosphate on yeast glyceraldehyde-3-phosphate dehydrogenase. II. Initial velocity kinetic studies.
    Rock MG; Cook RA
    Biochemistry; 1974 Sep; 13(20):4200-4. PubMed ID: 4370446
    [No Abstract]   [Full Text] [Related]  

  • 9. Rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase: half-of-the-sites reactivity of the enzyme modified at arginine residues.
    Kuzminskaya EV; Asryants RA; Nagradova NK
    Biochem Biophys Res Commun; 1992 Sep; 187(2):577-83. PubMed ID: 1530616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Half-of-the sites reactivity and negative co-operativity: the case of yeast glyceraldehyde 3-phosphate dehydrogenase.
    Stallcup WB; Koshland DE
    J Mol Biol; 1973 Oct; 80(1):41-62. PubMed ID: 4594141
    [No Abstract]   [Full Text] [Related]  

  • 11. Subunit interaction in catalysis. Some experimental and theoretical approaches with glyceraldehyde-3-phosphate dehydrogenase.
    Cardon JW; Boyer PD
    J Biol Chem; 1982 Jul; 257(13):7615-22. PubMed ID: 7085642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the function of half-site reactivity: intersubunit NAD+-dependent activation of acyl-glyceraldehyde 3-phosphate dehydrogenase reduction by NADH.
    Schwendimann B; Ingbar D; Bernhard SA
    J Mol Biol; 1976 Nov; 108(1):123-38. PubMed ID: 187755
    [No Abstract]   [Full Text] [Related]  

  • 13. Half-of-the-sites and all-of-the-sites reactivity in rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    Levitzki A
    J Mol Biol; 1974 Dec; 90(3):451-68. PubMed ID: 4375201
    [No Abstract]   [Full Text] [Related]  

  • 14. Inactivation precedes changes in allosteric properties and conformation of D-glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase during denaturation by guanidinium chloride.
    Jiang RF; Tsou CL
    Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):241-5. PubMed ID: 7945247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and reactivity relationship in glyceraldehyde-3-phosphate dehydrogenase. Dinitrophenylation of cysteine residues of yeast and rabbit muscle enzymes.
    Foucault G; Bodo JM; Nakano M
    Eur J Biochem; 1981 Oct; 119(3):625-32. PubMed ID: 7030743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of negative cooperativity in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Henis YI; Levitzki A
    Ann N Y Acad Sci; 1981; 366():217-36. PubMed ID: 6942746
    [No Abstract]   [Full Text] [Related]  

  • 17. Coenzyme binding and co-operativity in D-glyceraldehyde 3-phosphate dehydrogenase.
    Biesecker G; Wonacott AJ
    Biochem Soc Trans; 1977; 5(3):647-52. PubMed ID: 198263
    [No Abstract]   [Full Text] [Related]  

  • 18. Half-of-the sites reactivity in the catalytic mechanism of yeast glyceraldehyde 3-phosphate dehydrogenase.
    Stallcup WB; Koshland DE
    J Mol Biol; 1973 Oct; 80(1):77-91. PubMed ID: 4361748
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular basis of negative co-operativity in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase.
    Schlessinger J; Levitzki A
    J Mol Biol; 1974 Feb; 82(4):547-61. PubMed ID: 4361750
    [No Abstract]   [Full Text] [Related]  

  • 20. D-glyceraldehyde-3-phosphate dehydrogenase subunit cooperativity studied using immobilized enzyme forms.
    Douzhenkova IV; Asryants RA; Nagradova NK
    Biochim Biophys Acta; 1988 Nov; 957(1):60-70. PubMed ID: 3179321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.