These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 17141921)
1. Evidence dromyosuppressin acts at posterior and anterior pacemakers to decrease the fast and the slow cardiac activity in the blowfly Protophormia terraenovae. Angioy AM; Muroni P; Barbarossa IT; McCormick J; Nichols R Peptides; 2007 Mar; 28(3):585-93. PubMed ID: 17141921 [TBL] [Abstract][Full Text] [Related]
2. Innervation of dromyosuppressin (DMS) immunoreactive processes and effect of DMS and benzethonium chloride on the Phormia regina (Meigen) crop. Richer S; Stoffolano JG; Yin CM; Nichols R J Comp Neurol; 2000 May; 421(1):136-42. PubMed ID: 10813776 [TBL] [Abstract][Full Text] [Related]
3. FMRFamide-related peptides and serotonin regulate Drosophila melanogaster heart rate: mechanisms and structure requirements. Nichols R Peptides; 2006 May; 27(5):1130-7. PubMed ID: 16516344 [TBL] [Abstract][Full Text] [Related]
4. Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity. Setzu M; Biolchini M; Lilliu A; Manca M; Muroni P; Poddighe S; Bass C; Angioy AM; Nichols R Peptides; 2012 Feb; 33(2):230-9. PubMed ID: 22289500 [TBL] [Abstract][Full Text] [Related]
5. Structure-activity and immunochemical data provide evidence of developmental- and tissue-specific myosuppressin signaling. Dickerson M; McCormick J; Mispelon M; Paisley K; Nichols R Peptides; 2012 Aug; 36(2):272-9. PubMed ID: 22613084 [TBL] [Abstract][Full Text] [Related]
6. The effects of three Drosophila melanogaster myotropins on the frequency of foregut contractions differ. Kaminski S; Orlowski E; Berry K; Nichols R J Neurogenet; 2002; 16(2):125-34. PubMed ID: 12479379 [TBL] [Abstract][Full Text] [Related]
7. The myosuppressin structure-activity relationship for cardiac contractility and its receptor interactions support the presence of a ligand-directed signaling pathway in heart. Nichols R; Pittala K; Leander M; Maynard B; Nikolaou P; Marciniak P Peptides; 2021 Dec; 146():170641. PubMed ID: 34453985 [TBL] [Abstract][Full Text] [Related]
8. A single receptor transduces both inhibitory and stimulatory signals of FMRFamide-related peptides. Wang Z; Orchard I; Lange AB; Chen X; Starratt AN Peptides; 1995; 16(7):1181-6. PubMed ID: 8545236 [TBL] [Abstract][Full Text] [Related]
9. Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides. Nichols R Annu Rev Entomol; 2003; 48():485-503. PubMed ID: 12414735 [TBL] [Abstract][Full Text] [Related]
10. Spatial and temporal expression identify dromyosuppressin as a brain-gut peptide in Drosophila melanogaster. McCormick J; Nichols R J Comp Neurol; 1993 Dec; 338(2):278-88. PubMed ID: 8308172 [TBL] [Abstract][Full Text] [Related]
11. Pigment-dispersing hormone-immunoreactive neurons and their relation to serotonergic neurons in the blowfly and cockroach visual system. Nässel DR; Shiga S; Wikstrand EM; Rao KR Cell Tissue Res; 1991 Dec; 266(3):511-23. PubMed ID: 1811881 [TBL] [Abstract][Full Text] [Related]
12. Dromyosuppressin and drosulfakinin, two structurally related Drosophila neuropeptides, are uniquely expressed in the adult central nervous system. Nichols R; McCormick J; Lim I Ann N Y Acad Sci; 1997 Apr; 814():315-8. PubMed ID: 9160985 [TBL] [Abstract][Full Text] [Related]
13. Insect neuropeptides of the pyrokinin/PBAN family accelerate pupariation in the fleshfly (Sarcophaga bullata) larvae. Zdarek J; Nachman RJ; Hayes TK Ann N Y Acad Sci; 1997 Apr; 814():67-72. PubMed ID: 9160960 [No Abstract] [Full Text] [Related]
14. Immunocytochemistry of sequence-related neuropeptides in Drosophila. Tibbetts MF; Nichols R Neuropeptides; 1993 Jun; 24(6):321-5. PubMed ID: 8350979 [TBL] [Abstract][Full Text] [Related]
15. Excitatory actions of FMRFamide-related peptides (FaRPs) on the neurogenic Limulus heart. Groome JR; Townley MA; Watson WH Biol Bull; 1994 Jun; 186(3):309-18. PubMed ID: 8043656 [TBL] [Abstract][Full Text] [Related]
16. Myotropic peptides in Drosophila melanogaster and the genes that encode them. Nichols R; Bendena WG; Tobe SS J Neurogenet; 2002; 16(1):1-28. PubMed ID: 12420787 [TBL] [Abstract][Full Text] [Related]
17. Neuropeptides regulate the cardiac activity of a prosobranch mollusc, Rapana thomasiana. Fujiwara-Sakata M; Kobayashi M Cell Tissue Res; 1992 Aug; 269(2):241-7. PubMed ID: 1423492 [TBL] [Abstract][Full Text] [Related]
18. Regulation of lepidopteran foregut movement by allatostatins and allatotropin from the frontal ganglion. Duve H; East PD; Thorpe A J Comp Neurol; 1999 Oct; 413(3):405-16. PubMed ID: 10502248 [TBL] [Abstract][Full Text] [Related]
19. Identification of the dipteran Leu-callatostatin peptide family: the pattern of precursor processing revealed by isolation studies in Calliphora vomitoria. Duve H; Johnsen AH; Maestro JL; Scott AG; East PD; Thorpe A Regul Pept; 1996 Nov; 67(1):11-9. PubMed ID: 8952000 [TBL] [Abstract][Full Text] [Related]
20. Reflex cardiac response to various olfactory stimuli in the blowfly, Protophormia terraenovae. Angioy AM; Tomassini Barbarossa I; Crnjar R; Liscia A; Pietra P Neurosci Lett; 1987 Oct; 81(3):263-6. PubMed ID: 3431742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]