These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17142267)

  • 1. On the origin of asymmetric interactions between permeant anions and the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Fatehi M; St Aubin CN; Linsdell P
    Biophys J; 2007 Feb; 92(4):1241-53. PubMed ID: 17142267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled movement of permeant and blocking ions in the CFTR chloride channel pore.
    Gong X; Linsdell P
    J Physiol; 2003 Jun; 549(Pt 2):375-85. PubMed ID: 12679371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore.
    Gong X; Linsdell P
    J Physiol; 2003 Jun; 549(Pt 2):387-97. PubMed ID: 12679372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore.
    Gong X; Burbridge SM; Cowley EA; Linsdell P
    J Physiol; 2002 Apr; 540(Pt 1):39-47. PubMed ID: 11927667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore.
    Gong X; Linsdell P
    J Gen Physiol; 2003 Dec; 122(6):673-87. PubMed ID: 14610019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.
    Linsdell P
    Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes.
    Ge N; Linsdell P
    J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple inhibitory effects of Au(CN)(2-) ions on cystic fibrosis transmembrane conductance regulator Cl(-) channel currents.
    Linsdell P; Gong X
    J Physiol; 2002 Apr; 540(Pt 1):29-38. PubMed ID: 11927666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore.
    Serrano JR; Liu X; Borg ER; Alexander CS; Shaw CF; Dawson DC
    Biophys J; 2006 Sep; 91(5):1737-48. PubMed ID: 16766608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties.
    Zhou JJ; Linsdell P
    Can J Physiol Pharmacol; 2009 May; 87(5):387-95. PubMed ID: 19448737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Zhou JJ; Fatehi M; Linsdell P
    J Membr Biol; 2007 Apr; 216(2-3):129-42. PubMed ID: 17673962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN; Linsdell P
    J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Physiol; 2001 Feb; 531(Pt 1):51-66. PubMed ID: 11179391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    St Aubin CN; Zhou JJ; Linsdell P
    Mol Pharmacol; 2007 May; 71(5):1360-8. PubMed ID: 17293558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore.
    Zhou Z; Hu S; Hwang TC
    J Physiol; 2001 Apr; 532(Pt 2):435-48. PubMed ID: 11306662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X; Linsdell P
    Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore.
    Linsdell P
    Pflugers Arch; 2014 Dec; 466(12):2243-55. PubMed ID: 24671572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P; Evagelidis A; Hanrahan JW
    Biophys J; 2000 Jun; 78(6):2973-82. PubMed ID: 10827976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P
    Exp Physiol; 2006 Jan; 91(1):123-9. PubMed ID: 16157656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anion conductance selectivity mechanism of the CFTR chloride channel.
    Linsdell P
    Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.