BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17142284)

  • 1. Guanylate kinase, induced fit, and the allosteric spring probe.
    Choi B; Zocchi G
    Biophys J; 2007 Mar; 92(5):1651-8. PubMed ID: 17142284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase.
    Hible G; Christova P; Renault L; Seclaman E; Thompson A; Girard E; Munier-Lehmann H; Cherfils J
    Proteins; 2006 Feb; 62(2):489-500. PubMed ID: 16288457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation.
    Zhang Y; Niu H; Li Y; Chu H; Shen H; Zhang D; Li G
    Sci Rep; 2015 Feb; 5():8405. PubMed ID: 25672880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the folding pathway and substrate induced conformational changes in B. malayi Guanylate kinase.
    Gupta S; Yadav S; Suryanarayanan V; Singh SK; Saxena JK
    Int J Biol Macromol; 2017 Jan; 94(Pt A):621-633. PubMed ID: 27751808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning, expression, characterization and mutation of Plasmodium falciparum guanylate kinase.
    Kandeel M; Nakanishi M; Ando T; El-Shazly K; Yosef T; Ueno Y; Kitade Y
    Mol Biochem Parasitol; 2008 Jun; 159(2):130-3. PubMed ID: 18374996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes.
    Blaszczyk J; Li Y; Yan H; Ji X
    J Mol Biol; 2001 Mar; 307(1):247-57. PubMed ID: 11243817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme closure and nucleotide binding structurally lock guanylate kinase.
    Delalande O; Sacquin-Mora S; Baaden M
    Biophys J; 2011 Sep; 101(6):1440-9. PubMed ID: 21943425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformations of nucleotides bound to wild type and Y78F mutant yeast guanylate kinase: proton two-dimensional transferred NOESY measurements.
    Ray BD; Jarori GK; Raghunathan V; Yan H; Nageswara Rao BD
    Biochemistry; 2005 Oct; 44(42):13762-70. PubMed ID: 16229466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding dynamics and energetic insight into the molecular forces driving nucleotide binding by guanylate kinase.
    Kandeel M; Kitade Y
    J Mol Recognit; 2011; 24(2):322-32. PubMed ID: 21360614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale production of the immunomodulator c-di-GMP from GMP and ATP by an enzymatic cascade.
    Spehr V; Warrass R; Höcherl K; Ilg T
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):761-75. PubMed ID: 21710212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of the enzyme guanylate kinase into a mitotic-spindle orienting protein by a single mutation that inhibits GMP-induced closing.
    Johnston CA; Whitney DS; Volkman BF; Doe CQ; Prehoda KE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(44):E973-8. PubMed ID: 21990344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution.
    Stehle T; Schulz GE
    J Mol Biol; 1992 Apr; 224(4):1127-41. PubMed ID: 1314905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr
    S Yadav G; K Ravala S; Kachhap S; Thakur M; Roy A; Singh B; Karthikeyan S; K Chakraborti P
    Biosci Rep; 2017 Dec; 37(6):. PubMed ID: 28963370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of guanylate kinase from gram positive and gram negative microorganisms; preliminary results.
    Eftimie AM; Toma F; Costache AZ; Bucurenci N
    Roum Arch Microbiol Immunol; 2007; 66(1-2):22-5. PubMed ID: 18928059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipation at the angstrom scale: Probing the surface and interior of an enzyme.
    Alavi Z; Zocchi G
    Phys Rev E; 2018 May; 97(5-1):052402. PubMed ID: 29906977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Productive versus unproductive nucleotide binding in yeast guanylate kinase mutants: comparison of R41M with K14M by proton two dimensional transferred NOESY.
    Ray BD; Scott J; Yan H; Rao BD
    Biochemistry; 2009 Jun; 48(24):5532-40. PubMed ID: 19419194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of ATP binding to CheA containing tryptophan substitutions near the active site.
    Stewart RC
    Biochemistry; 2005 Mar; 44(11):4375-85. PubMed ID: 15766267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels.
    Smith S; Boitz J; Chidambaram ES; Chatterjee A; Ait-Tihyaty M; Ullman B; Jardim A
    Mol Microbiol; 2016 Jun; 100(5):824-40. PubMed ID: 26853689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 9-(Phosphonoalkyl)guanine derivatives as substrates or inhibitors of guanylate kinase.
    Navé JF; Eschbach A; Halazy S
    Arch Biochem Biophys; 1992 Jun; 295(2):253-7. PubMed ID: 1316735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit.
    Kapustina M; Carter CW
    J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.