These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 17142306)

  • 1. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision making.
    Schweimer J; Hauber W
    Learn Mem; 2006; 13(6):777-82. PubMed ID: 17142306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of catecholamine neurotransmission in the rat anterior cingulate in effort-related decision making.
    Schweimer J; Saft S; Hauber W
    Behav Neurosci; 2005 Dec; 119(6):1687-92. PubMed ID: 16420173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prefrontostriatal circuitry regulates effort-related decision making.
    Hauber W; Sommer S
    Cereb Cortex; 2009 Oct; 19(10):2240-7. PubMed ID: 19131436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy.
    Schweimer J; Hauber W
    Learn Mem; 2005; 12(3):334-42. PubMed ID: 15930509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amygdala-prefrontal cortical circuitry regulates effort-based decision making.
    Floresco SB; Ghods-Sharifi S
    Cereb Cortex; 2007 Feb; 17(2):251-60. PubMed ID: 16495432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.
    Larkin JD; Jenni NL; Floresco SB
    Psychopharmacology (Berl); 2016 Jan; 233(1):121-36. PubMed ID: 26432096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost-benefit decision making in rats.
    Wang S; Hu SH; Shi Y; Li BM
    Learn Behav; 2017 Mar; 45(1):89-99. PubMed ID: 27604387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in effort-related decision-making induced by stimulation of dopamine D
    Bryce CA; Floresco SB
    Psychopharmacology (Berl); 2019 Sep; 236(9):2699-2712. PubMed ID: 30972447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine receptors regulate preference between high-effort and high-risk rewards.
    Gabriel DBK; Liley AE; Freels TG; Simon NW
    Psychopharmacology (Berl); 2021 Apr; 238(4):991-1004. PubMed ID: 33410986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.
    Khani A; Kermani M; Hesam S; Haghparast A; Argandoña EG; Rainer G
    Psychopharmacology (Berl); 2015 Jun; 232(12):2097-112. PubMed ID: 25529106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidance of instrumental behavior under reversal conditions requires dopamine D1 and D2 receptor activation in the orbitofrontal cortex.
    Calaminus C; Hauber W
    Neuroscience; 2008 Jul; 154(4):1195-204. PubMed ID: 18538938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orexin 1 receptors in the anterior cingulate and orbitofrontal cortex regulate cost and benefit decision-making.
    Karimi S; Hamidi G; Fatahi Z; Haghparast A
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Mar; 89():227-235. PubMed ID: 30222989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dorsomedial striatum mediates flexible choice behavior in spatial tasks.
    Braun S; Hauber W
    Behav Brain Res; 2011 Jul; 220(2):288-93. PubMed ID: 21316399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making.
    Mai B; Sommer S; Hauber W
    Int J Neuropsychopharmacol; 2015 Apr; 18(10):pyv043. PubMed ID: 25908669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value.
    Winter S; Dieckmann M; Schwabe K
    Behav Brain Res; 2009 Mar; 198(1):206-13. PubMed ID: 19041903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions.
    Walton ME; Bannerman DM; Alterescu K; Rushworth MF
    J Neurosci; 2003 Jul; 23(16):6475-9. PubMed ID: 12878688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D2-like receptor tone in the nucleus accumbens.
    Porter-Stransky KA; Seiler JL; Day JJ; Aragona BJ
    Eur J Neurosci; 2013 Aug; 38(4):2572-88. PubMed ID: 23692625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists.
    Yohn SE; Santerre JL; Nunes EJ; Kozak R; Podurgiel SJ; Correa M; Salamone JD
    Pharmacol Biochem Behav; 2015 Aug; 135():217-26. PubMed ID: 26022661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine modulates effort-based decision making in rats.
    Bardgett ME; Depenbrock M; Downs N; Points M; Green L
    Behav Neurosci; 2009 Apr; 123(2):242-51. PubMed ID: 19331447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine modulates neural networks involved in effort-based decision-making.
    Assadi SM; Yücel M; Pantelis C
    Neurosci Biobehav Rev; 2009 Mar; 33(3):383-93. PubMed ID: 19046987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.