These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 17142371)
1. Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Offre P; Pivato B; Siblot S; Gamalero E; Corberand T; Lemanceau P; Mougel C Appl Environ Microbiol; 2007 Feb; 73(3):913-21. PubMed ID: 17142371 [TBL] [Abstract][Full Text] [Related]
2. Microdiversity of Burkholderiales associated with mycorrhizal and nonmycorrhizal roots of Medicago truncatula. Offre P; Pivato B; Mazurier S; Siblot S; Berta G; Lemanceau P; Mougel C FEMS Microbiol Ecol; 2008 Aug; 65(2):180-92. PubMed ID: 18507681 [TBL] [Abstract][Full Text] [Related]
3. Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. Mougel C; Offre P; Ranjard L; Corberand T; Gamalero E; Robin C; Lemanceau P New Phytol; 2006; 170(1):165-75. PubMed ID: 16539613 [TBL] [Abstract][Full Text] [Related]
4. Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. Pivato B; Mazurier S; Lemanceau P; Siblot S; Berta G; Mougel C; Van Tuinen D New Phytol; 2007; 176(1):197-210. PubMed ID: 17803650 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Sanchez L; Weidmann S; Arnould C; Bernard AR; Gianinazzi S; Gianinazzi-Pearson V Plant Physiol; 2005 Oct; 139(2):1065-77. PubMed ID: 16183836 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. Viollet A; Corberand T; Mougel C; Robin A; Lemanceau P; Mazurier S FEMS Microbiol Ecol; 2011 Mar; 75(3):457-67. PubMed ID: 21204867 [TBL] [Abstract][Full Text] [Related]
7. Pseudomonas fluorescens C7R12 type III secretion system impacts mycorrhization of Medicago truncatula and associated microbial communities. Viollet A; Pivato B; Mougel C; Cleyet-Marel JC; Gubry-Rangin C; Lemanceau P; Mazurier S Mycorrhiza; 2017 Jan; 27(1):23-33. PubMed ID: 27549437 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of new symbiotic Medicago truncatula (Gaertn.) mutants, and phenotypic or genotypic complementary information on previously described mutants. Morandi D; Prado E; Sagan M; Duc G Mycorrhiza; 2005 Jun; 15(4):283-9. PubMed ID: 15558330 [TBL] [Abstract][Full Text] [Related]
9. Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. Pivato B; Gamalero E; Lemanceau P; Berta G FEMS Microbiol Lett; 2008 Dec; 289(2):173-80. PubMed ID: 19016872 [TBL] [Abstract][Full Text] [Related]
10. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. Camps C; Jardinaud MF; Rengel D; Carrère S; Hervé C; Debellé F; Gamas P; Bensmihen S; Gough C New Phytol; 2015 Oct; 208(1):224-40. PubMed ID: 25919491 [TBL] [Abstract][Full Text] [Related]
11. Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. Parádi I; van Tuinen D; Morandi D; Ochatt S; Robert F; Jacas L; Dumas-Gaudot E Mol Plant Microbe Interact; 2010 Sep; 23(9):1175-83. PubMed ID: 20687807 [TBL] [Abstract][Full Text] [Related]
12. A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Morandi D; le Signor C; Gianinazzi-Pearson V; Duc G Mycorrhiza; 2009 Aug; 19(6):435-441. PubMed ID: 19347373 [TBL] [Abstract][Full Text] [Related]
13. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
14. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
15. Metabolite profiling of mycorrhizal roots of Medicago truncatula. Schliemann W; Ammer C; Strack D Phytochemistry; 2008 Jan; 69(1):112-46. PubMed ID: 17706732 [TBL] [Abstract][Full Text] [Related]
16. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Bazin J; Khan GA; Combier JP; Bustos-Sanmamed P; Debernardi JM; Rodriguez R; Sorin C; Palatnik J; Hartmann C; Crespi M; Lelandais-Brière C Plant J; 2013 Jun; 74(6):920-34. PubMed ID: 23566016 [TBL] [Abstract][Full Text] [Related]
17. A snapshot of the transcriptome of Medicago truncatula (Fabales: Fabaceae) shoots and roots in response to an arbuscular mycorrhizal fungus and the pea aphid (Acyrthosiphon pisum) (Hemiptera: Aphididae). Gomez SK; Maurya AK; Irvin L; Kelly MP; Schoenherr AP; Huguet-Tapia JC; Bombarely A Environ Entomol; 2023 Aug; 52(4):667-680. PubMed ID: 37467039 [TBL] [Abstract][Full Text] [Related]
19. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Zhang X; Ren BH; Wu SL; Sun YQ; Lin G; Chen BD Chemosphere; 2015 Jan; 119():224-230. PubMed ID: 25016555 [TBL] [Abstract][Full Text] [Related]
20. Cesium could be used as a proxy for potassium in mycorrhizal Kafle A; Garcia K Plant Signal Behav; 2022 Dec; 17(1):2134676. PubMed ID: 36259539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]