BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 17143523)

  • 1. Application of Nipple Aspirate Fluid miRNA Profiles for Early Breast Cancer Detection and Management.
    Moelans CB; Patuleia SIS; van Gils CH; van der Wall E; van Diest PJ
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early detection of breast cancer through the diagnosis of Nipple Aspirate Fluid (NAF).
    Pant A; Anjankar AP; Shende S; Dhok A; Jha RK; Manglaram AV
    Clin Proteomics; 2024 Jun; 21(1):45. PubMed ID: 38943056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nipple fluid for breast cancer diagnosis using the nanopore of Phi29 DNA-packaging motor.
    Zhang L; Burns N; Ji Z; Sun S; Deutscher SL; Carson WE; Guo P
    Nanomedicine; 2023 Feb; 48():102642. PubMed ID: 36581256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nipple aspirate fluid and its use for the early detection of breast cancer.
    Jiwa N; Ezzat A; Holt J; Wijayatilake DS; Takats Z; Leff DR
    Ann Med Surg (Lond); 2022 May; 77():103625. PubMed ID: 35638006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics and its applications in breast cancer.
    Neagu AN; Whitham D; Buonanno E; Jenkins A; Alexa-Stratulat T; Tamba BI; Darie CC
    Am J Cancer Res; 2021; 11(9):4006-4049. PubMed ID: 34659875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human body-fluid proteome: quantitative profiling and computational prediction.
    Huang L; Shao D; Wang Y; Cui X; Li Y; Chen Q; Cui J
    Brief Bioinform; 2021 Jan; 22(1):315-333. PubMed ID: 32020158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Biomarkers for Breast Cancer Risk Are Specifically Correlated with Local Steroid Hormones in Nipple Aspirate Fluid.
    Shidfar A; Fatokun T; Ivancic D; Chatterton RT; Khan SA; Wang J
    Horm Cancer; 2016 Aug; 7(4):252-9. PubMed ID: 27094399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of protein profile classification model and screening of proteomic signature of acute leukemia.
    Xu Y; Zhuo J; Duan Y; Shi B; Chen X; Zhang X; Xiao L; Lou J; Huang R; Zhang Q; Du X; Li M; Wang D; Shi D
    Int J Clin Exp Pathol; 2014; 7(9):5569-81. PubMed ID: 25337199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The proteomics big challenge for biomarkers and new drug-targets discovery.
    Savino R; Paduano S; Preianò M; Terracciano R
    Int J Mol Sci; 2012 Oct; 13(11):13926-48. PubMed ID: 23203042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secreted proteins as a fundamental source for biomarker discovery.
    Stastna M; Van Eyk JE
    Proteomics; 2012 Feb; 12(4-5):722-35. PubMed ID: 22247067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein biomarkers for the early detection of breast cancer.
    Misek DE; Kim EH
    Int J Proteomics; 2011; 2011():343582. PubMed ID: 22084684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic Proteome Analysis of Triple Negative and Hormone-Receptor-Positive-Her2-Negative Breast Cancer by Mass Spectrometer.
    Lu M; Whelan SA; He J; Saxton RE; Faull KF; Whitelegge JP; Chang HR
    Clin Proteomics; 2010 Sep; 6(3):93-103. PubMed ID: 20930921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic Fractionation Enhances Novel Protein Detection by Mass Spectrometry in Triple Negative Breast Cancer.
    Lu M; Whitelegge JP; Whelan SA; He J; Saxton RE; Faull KF; Chang HR
    J Proteomics Bioinform; 2010 Jan; 3(2):1-10. PubMed ID: 20596302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a beta-casein-like peptide in breast nipple aspirate fluid that is associated with breast cancer.
    Sauter ER; Davis W; Qin W; Scanlon S; Mooney B; Bromert K; Folk WR
    Biomark Med; 2009 Oct; 3(5):577-88. PubMed ID: 20477526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges for biomarker discovery in body fluids using SELDI-TOF-MS.
    De Bock M; de Seny D; Meuwis MA; Chapelle JP; Louis E; Malaise M; Merville MP; Fillet M
    J Biomed Biotechnol; 2010; 2010():906082. PubMed ID: 20029632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics and mass spectrometry for cancer biomarker discovery.
    Lu M; Faull KF; Whitelegge JP; He J; Shen D; Saxton RE; Chang HR
    Biomark Insights; 2007 Oct; 2():347-60. PubMed ID: 19662217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile whole mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2.0.
    Jakupciak JP; Maggrah A; Maragh S; Maki J; Reguly B; Maki K; Wittock R; Robinson K; Wagner PD; Thayer RE; Gehman K; Gehman T; Srivastava S; Ngom A; Dakubo GD; Parr RL
    BMC Cancer; 2008 Apr; 8():95. PubMed ID: 18402686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of breast cancer biomarkers in nipple aspirate fluid by SELDI-TOF and their identification by combined liquid chromatography-tandem mass spectrometry.
    He J; Gornbein J; Shen D; Lu M; Rovai LE; Shau H; Katz J; Whitelegge JP; Faull KF; Chang HR
    Int J Oncol; 2007 Jan; 30(1):145-54. PubMed ID: 17143523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein.
    Pawlik TM; Hawke DH; Liu Y; Krishnamurthy S; Fritsche H; Hunt KK; Kuerer HM
    BMC Cancer; 2006 Mar; 6():68. PubMed ID: 16542425
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.