These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 17143751)
41. [Experimental study on repair of articular cartilage defects with homograft of marrow mesenchymal stem cells seeded onto poly-L-lactic acid/gelatin]. Wang M; Xia Y; Wang S Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jul; 21(7):753-8. PubMed ID: 17694670 [TBL] [Abstract][Full Text] [Related]
42. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029 [TBL] [Abstract][Full Text] [Related]
43. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. Hu Y; Winn SR; Krajbich I; Hollinger JO J Biomed Mater Res A; 2003 Mar; 64(3):583-90. PubMed ID: 12579573 [TBL] [Abstract][Full Text] [Related]
44. Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture. Barbanti SH; Santos AR; Zavaglia CA; Duek EA J Mater Sci Mater Med; 2004 Dec; 15(12):1315-21. PubMed ID: 15747184 [TBL] [Abstract][Full Text] [Related]
45. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide. Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415 [TBL] [Abstract][Full Text] [Related]
46. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Park K; Ju YM; Son JS; Ahn KD; Han DK J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114 [TBL] [Abstract][Full Text] [Related]
47. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Woo KM; Seo J; Zhang R; Ma PX Biomaterials; 2007 Jun; 28(16):2622-30. PubMed ID: 17320948 [TBL] [Abstract][Full Text] [Related]
48. Plasma-treated, collagen-anchored polylactone: Its cell affinity evaluation under shear or shear-free conditions. Yang J; Wan Y; Yang J; Bei J; Wang S J Biomed Mater Res A; 2003 Dec; 67(4):1139-47. PubMed ID: 14624499 [TBL] [Abstract][Full Text] [Related]
49. Three-dimensional honeycomb-patterned chitosan/poly(L-lactic acid) scaffolds with improved mechanical and cell compatibility. Zhao M; Li L; Li X; Zhou C; Li B J Biomed Mater Res A; 2011 Sep; 98(3):434-41. PubMed ID: 21630436 [TBL] [Abstract][Full Text] [Related]
50. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
51. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Mooney DJ; Baldwin DF; Suh NP; Vacanti JP; Langer R Biomaterials; 1996 Jul; 17(14):1417-22. PubMed ID: 8830969 [TBL] [Abstract][Full Text] [Related]
52. Surface modification of poly(L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Lin Y; Wang L; Zhang P; Wang X; Chen X; Jing X; Su Z Acta Biomater; 2006 Mar; 2(2):155-64. PubMed ID: 16701873 [TBL] [Abstract][Full Text] [Related]
53. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Lu H; Ko YG; Kawazoe N; Chen G Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151 [TBL] [Abstract][Full Text] [Related]
54. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714 [TBL] [Abstract][Full Text] [Related]
55. Porous poly (L-lactic acid) scaffolds are optimal substrates for internal colonization by A6 mesoangioblasts and immunocytochemical analyses. Carfí-Pavia F; Turturici G; Geraci F; Brucato V; La Carrubba V; Luparello C; Sconzo G J Biosci; 2009 Dec; 34(6):873-9. PubMed ID: 20093740 [TBL] [Abstract][Full Text] [Related]
56. In vitro biocompatibility of different polyester membranes. Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104 [TBL] [Abstract][Full Text] [Related]
57. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Dong S; Sun J; Li Y; Li J; Cui W; Li B Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397 [TBL] [Abstract][Full Text] [Related]
58. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
59. Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. Rohanizadeh R; Swain MV; Mason RS J Mater Sci Mater Med; 2008 Mar; 19(3):1173-82. PubMed ID: 17701305 [TBL] [Abstract][Full Text] [Related]
60. Primary human hepatocytes on biodegradable poly(l-lactic acid) matrices: a promising model for improving transplantation efficiency with tissue engineering. Török E; Lutgehetmann M; Bierwolf J; Melbeck S; Düllmann J; Nashan B; Ma PX; Pollok JM Liver Transpl; 2011 Feb; 17(2):104-14. PubMed ID: 21280182 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]