BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 17143760)

  • 1. Interpenetrating Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(N, N-dimethylacrylamide) as Potential Systems for Dermal Delivery of Dexamethasone Phosphate.
    Simeonov M; Kostova B; Vassileva E
    Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties.
    Tuancharoensri N; Sonjan S; Promkrainit S; Daengmankhong J; Phimnuan P; Mahasaranon S; Jongjitwimol J; Charoensit P; Ross GM; Viennet C; Viyoch J; Ross S
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Semi IPNs with Duple Dynamic Linkers: Self-Healing, Reprocessing, Welding, and Shape Memory Behaviors.
    Zeng Y; Yang W; Liu S; Shi X; Xi A; Zhang F
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34064041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CuAAC-methacrylate interpenetrating polymer network (IPN) properties modulated by visible-light photoinitiation.
    Kabra M; Kloxin CJ
    Polym Chem; 2023 Aug; 14(32):3739-3748. PubMed ID: 37663952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphoton Lithography of Interpenetrating Polymer Networks for Tailored Microstructure Thermal and Micromechanical Properties.
    Silbernagl D; Szymoniak P; Tavasolyzadeh Z; Sturm H; Topolniak I
    Small; 2024 May; ():e2310580. PubMed ID: 38751207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering.
    Gsib O; Duval JL; Goczkowski M; Deneufchatel M; Fichet O; Larreta-Garde V; Bencherif SA; Egles C
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29232876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary Silicone Elastomeric Systems with Stepwise Crosslinking as a Tool for Tuning Electromechanical Behavior.
    Bele A; Yu L; Dascalu M; Timpu D; Sacarescu L; Varganici CD; Ionita D; Isac D; Vasiliu AL
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbodiimide-Driven Toughening of Interpenetrated Polymer Networks.
    Rajawasam CWH; Tran C; Sparks JL; Krueger WH; Hartley CS; Konkolewicz D
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202400843. PubMed ID: 38517330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental data in support of characterization of the CePO
    Palma-Ramírez D; Domínguez-Crespo MA; Torres-Huerta AM; Escobar-Barrios VA; Dorantes-Rosales H; Willcock H
    Data Brief; 2018 Dec; 21():2350-2359. PubMed ID: 30555873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Patterning in Crosslinked Methacrylate Copolymer Networks: An Atomic Force Microscopy Study.
    Ye Q; Spencer P; Wang Y
    J Appl Polym Sci Symp; 2007 Dec; 106(6):3843-3851. PubMed ID: 19081742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of microstructural variations on morphology and separation properties of polybutadiene-based polyurethanes.
    Pournaghshband Isfahani A; Shahrooz M; Yamamoto T; Muchtar A; Ito MM; Yamaguchi D; Takenaka M; Sivaniah E; Ghalei B
    RSC Adv; 2021 Apr; 11(25):15449-15456. PubMed ID: 35424034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling bacterial fouling with polyurethane/
    Xiu K; Wen J; Porteous N; Sun Y
    J Bioact Compat Polym; 2017; 32(5):542-554. PubMed ID: 30034088
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate) for Medicinal Use.
    Kukolevska OS; Gerashchenko II; Borysenko MV; Pakhlov EM; Machovsky M; Yushchenko TI
    Nanoscale Res Lett; 2017 Dec; 12(1):133. PubMed ID: 28235364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High compliance vascular grafts based on semi-interpenetrating networks.
    Dempsey DK; Nezarati RM; Mackey CE; Cosgriff-Hernandez EM
    Macromol Mater Eng; 2014 Dec; 299(12):1455-1464. PubMed ID: 25601822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications.
    Karabanova LV; Lloyd AW; Mikhalovsky SV; Helias M; Phillips GJ; Rose SF; Mikhalovska L; Boiteux G; Sergeeva LM; Lutsyk ED; Svyatyna A
    J Mater Sci Mater Med; 2006 Dec; 17(12):1283-96. PubMed ID: 17143760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate).
    Kong X; Narine SS
    Biomacromolecules; 2008 Aug; 9(8):2221-9. PubMed ID: 18624453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation of hMSCs on semi-interpenetrating polymer networks of polyurethane/poly(2‑hydroxyethyl methacrylate)/cellulose nanowhisker scaffolds.
    Shahrousvand M; Ghollasi M; Zarchi AAK; Salimi A
    Int J Biol Macromol; 2019 Oct; 138():262-271. PubMed ID: 31302125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The differential effects of poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts.
    Peluso G; Petillo O; Anderson JM; Ambrosio L; Nicolais L; Melone MA; Eschbach FO; Huang SJ
    J Biomed Mater Res; 1997 Mar; 34(3):327-36. PubMed ID: 9086402
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.