BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 17144298)

  • 1. Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, southern Germany.
    Einsiedl F; Mayer B
    Environ Sci Technol; 2006 Nov; 40(21):6697-702. PubMed ID: 17144298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers.
    Koh DC; Mayer B; Lee KS; Ko KS
    J Contam Hydrol; 2010 Oct; 118(1-2):62-78. PubMed ID: 20828864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sources and processes affecting sulfate in a karstic groundwater system of the Franconian Alb, southern Germany.
    Einsiedl F; Mayer B
    Environ Sci Technol; 2005 Sep; 39(18):7118-25. PubMed ID: 16201637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate sources and biogeochemical processes in karst underground rivers impacted by different anthropogenic input characteristics.
    Yang P; Wang Y; Wu X; Chang L; Ham B; Song L; Groves C
    Environ Pollut; 2020 Oct; 265(Pt B):114835. PubMed ID: 32540593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses.
    Kim H; Kaown D; Mayer B; Lee JY; Hyun Y; Lee KK
    Sci Total Environ; 2015 Nov; 533():566-75. PubMed ID: 26204420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Review of dual stable isotope technique for nitrate source identification in surface- and groundwater in China].
    Xu ZW; Zhang XY; Yu GR; Sun XM; Wen XF
    Huan Jing Ke Xue; 2014 Aug; 35(8):3230-8. PubMed ID: 25338404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional patterns in the isotopic composition of natural and anthropogenic nitrate in groundwater, High Plains, U.S.A.
    McMahon PB; Böhlke JK
    Environ Sci Technol; 2006 May; 40(9):2965-70. PubMed ID: 16719098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using delta15N- and delta18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China.
    Liu CQ; Li SL; Lang YC; Xiao HY
    Environ Sci Technol; 2006 Nov; 40(22):6928-33. PubMed ID: 17153996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs.
    Eller KT; Katz BG
    J Environ Manage; 2017 Jul; 196():702-709. PubMed ID: 28371747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region.
    Wu Y; Luo Z; Luo W; Ma T; Wang Y
    J Contam Hydrol; 2018 Nov; 218():44-58. PubMed ID: 30391046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.
    Han D; Cao G; McCallum J; Song X
    Sci Total Environ; 2015 Dec; 538():539-54. PubMed ID: 26318690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes.
    Lasagna M; De Luca DA
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2089-2104. PubMed ID: 29177999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach.
    Pastén-Zapata E; Ledesma-Ruiz R; Harter T; Ramírez AI; Mahlknecht J
    Sci Total Environ; 2014 Feb; 470-471():855-64. PubMed ID: 24200723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate in groundwater of the United States, 1991-2003.
    Burow KR; Nolan BT; Rupert MG; Dubrovsky NM
    Environ Sci Technol; 2010 Jul; 44(13):4988-97. PubMed ID: 20540531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns.
    Mueller C; Krieg R; Merz R; Knöller K
    Isotopes Environ Health Stud; 2016; 52(1-2):61-74. PubMed ID: 25811939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotopic assessment of sources and processes affecting sulfate and nitrate in surface water and groundwater of Luxembourg.
    Rock L; Mayer B
    Isotopes Environ Health Stud; 2002 Dec; 38(4):191-206. PubMed ID: 12725423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters.
    Aquilina L; Vergnaud-Ayraud V; Labasque T; Bour O; Molénat J; Ruiz L; de Montety V; De Ridder J; Roques C; Longuevergne L
    Sci Total Environ; 2012 Oct; 435-436():167-78. PubMed ID: 22854088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogeochemistry and isotopic tracing of nitrate contamination of two aquifer systems on Jeju Island, Korea.
    Koh EH; Kaown D; Mayer B; Kang BR; Moon HS; Lee KK
    J Environ Qual; 2012; 41(6):1835-45. PubMed ID: 23128740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical evidence of recharge and supply controlling nitrate variability at springs discharging from the upper Floridan Aquifer.
    Spellman P; Gulley J; Pain A; Flint M; Kim S; Rath S
    Sci Total Environ; 2022 Sep; 838(Pt 2):156041. PubMed ID: 35597350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China.
    Hao Z; Zhang X; Gao Y; Xu Z; Yang F; Wen X; Wang Y
    Environ Pollut; 2018 May; 236():177-187. PubMed ID: 29414338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.