These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17144320)

  • 1. An improved calculation of the exergy of natural resources for exergetic life cycle assessment (ELCA).
    De Meester B; Dewulf J; Janssens A; Van Langenhove H
    Environ Sci Technol; 2006 Nov; 40(21):6844-51. PubMed ID: 17144320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.
    Laner D; Rechberger H; De Soete W; De Meester S; Astrup TF
    Waste Manag; 2015 Dec; 46():653-67. PubMed ID: 26384560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding exergy analysis to account for ecosystem products and services.
    Hau JL; Bakshi BR
    Environ Sci Technol; 2004 Jul; 38(13):3768-77. PubMed ID: 15296331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exergy and extended exergy accounting of very large complex systems with an application to the province of Siena, Italy.
    Sciubba E; Bastianoni S; Tiezzi E
    J Environ Manage; 2008 Jan; 86(2):372-82. PubMed ID: 17064841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis.
    Dewulf JP; Van Langenhove HR
    Environ Sci Technol; 2002 Mar; 36(5):1130-5. PubMed ID: 11918001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exergetic assessment for resources input and environmental emissions by Chinese industry during 1997-2006.
    Zhang B; Peng B; Liu M
    ScientificWorldJournal; 2012; 2012():692746. PubMed ID: 22973176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting.
    Dewulf J; Bösch ME; De Meester B; Van der Vorst G; Van Langenhove H; Hellweg S; Huijbregts MA
    Environ Sci Technol; 2007 Dec; 41(24):8477-83. PubMed ID: 18200882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic metrics for aggregation of natural resources in life cycle analysis: insight via application to some transportation fuels.
    Baral A; Bakshi BR
    Environ Sci Technol; 2010 Jan; 44(2):800-7. PubMed ID: 20020741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective.
    Taelman SE; De Meester S; Roef L; Michiels M; Dewulf J
    Bioresour Technol; 2013 Dec; 150():513-22. PubMed ID: 24012094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Appreciating the role of thermodynamics in LCA improvement analysis via an application to titanium dioxide nanoparticles.
    Grubb GF; Bakshi BR
    Environ Sci Technol; 2011 Apr; 45(7):3054-61. PubMed ID: 21361276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exergy: its potential and limitations in environmental science and technology.
    Dewulf J; Van Langenhove H; Muys B; Bruers S; Bakshi BR; Grubb GF; Paulus DM; Sciubba E
    Environ Sci Technol; 2008 Apr; 42(7):2221-32. PubMed ID: 18504947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An innovative application of extended exergy analysis into an industrial park.
    Fan Y; Qiao Q; Fang L
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11779-11788. PubMed ID: 28337629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation.
    Dorosz P; Wojcieszak P; Malecha Z
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of extended exergy method in driving mechanism and efficiency of regional eco-economy].
    Fan XG; Mi WB; Hou JW
    Ying Yong Sheng Tai Xue Bao; 2017 Jan; 28(1):273-280. PubMed ID: 29749212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Exergetic Performance of the Amine Treatment Unit in a Latin-American Refinery.
    Leal-Navarro J; Mestre-Escudero R; Puerta-Arana A; León-Pulido J; González-Delgado ÁD
    ACS Omega; 2019 Dec; 4(26):21993-21997. PubMed ID: 31891079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data on exergy and exergy analyses of drying process of onion in a batch dryer.
    Folayan JA; Osuolale FN; Anawe PAL
    Data Brief; 2018 Dec; 21():1784-1793. PubMed ID: 30505917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exergetic sustainability analysis of industrial furnace: a case study.
    Chowdhury H; Chowdhury T; Hossain N; Chowdhury P; Salam B; Sait SM; Mahlia TMI
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12881-12888. PubMed ID: 33094462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.
    Alanya S; Dewulf J; Duran M
    Environ Sci Technol; 2015 Aug; 49(16):9996-10006. PubMed ID: 26218291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of spatially differentiated resource footprints for products and services through a macro-economic and thermodynamic approach.
    Huysman S; Schaubroeck T; Dewulf J
    Environ Sci Technol; 2014 Aug; 48(16):9709-16. PubMed ID: 25025341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exergetic Analysis of a Cryogenic Air Separation Unit.
    Bucsa S; Serban A; Balan MC; Ionita C; Nastase G; Dobre C; Dobrovicescu A
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.