BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17144655)

  • 1. Substrate binding and catalytic mechanism of human choline acetyltransferase.
    Kim AR; Rylett RJ; Shilton BH
    Biochemistry; 2006 Dec; 45(49):14621-31. PubMed ID: 17144655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights and functional implications of choline acetyltransferase.
    Govindasamy L; Pedersen B; Lian W; Kukar T; Gu Y; Jin S; Agbandje-McKenna M; Wu D; McKenna R
    J Struct Biol; 2004 Nov; 148(2):226-35. PubMed ID: 15477102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redesign of cosubstrate specificity and identification of important residues for substrate binding to hChAT.
    Green KD; Porter VR; Zhang Y; Garneau-Tsodikova S
    Biochemistry; 2010 Jul; 49(29):6219-27. PubMed ID: 20560540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-entropy reduction used in the crystallization of human choline acetyltransferase.
    Kim AR; Dobransky T; Rylett RJ; Shilton BH
    Acta Crystallogr D Biol Crystallogr; 2005 Sep; 61(Pt 9):1306-10. PubMed ID: 16131766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two methods for large-scale purification of recombinant human choline acetyltransferase.
    Kim AR; Doherty-Kirby A; Lajoie G; Rylett RJ; Shilton BH
    Protein Expr Purif; 2005 Mar; 40(1):107-17. PubMed ID: 15721778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase.
    Modis Y; Wierenga RK
    J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for dynamic regulation of choline acetyltransferase by phosphorylation.
    Dobransky T; Rylett RJ
    J Neurochem; 2005 Oct; 95(2):305-13. PubMed ID: 16135099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization and preliminary X-ray crystallographic studies on recombinant rat choline acetyltransferase.
    Lian W; Gu Y; Pedersen B; Kukar T; Govindasamy L; Agbandje-McKenna M; Jin S; McKenna R; Wu D
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):374-5. PubMed ID: 14747730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP.
    Jogl G; Tong L
    Biochemistry; 2004 Feb; 43(6):1425-31. PubMed ID: 14769018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I.
    Kursula P; Sikkilä H; Fukao T; Kondo N; Wierenga RK
    J Mol Biol; 2005 Mar; 347(1):189-201. PubMed ID: 15733928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the cysteine residue exposed by the conformational change in pig heart succinyl-CoA:3-ketoacid coenzyme A transferase on binding coenzyme A.
    Tammam SD; Rochet JC; Fraser ME
    Biochemistry; 2007 Sep; 46(38):10852-63. PubMed ID: 17718512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choline acetyltransferase structure reveals distribution of mutations that cause motor disorders.
    Cai Y; Cronin CN; Engel AG; Ohno K; Hersh LB; Rodgers DW
    EMBO J; 2004 May; 23(10):2047-58. PubMed ID: 15131697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor.
    Olsen LR; Huang B; Vetting MW; Roderick SL
    Biochemistry; 2004 May; 43(20):6013-9. PubMed ID: 15147185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase.
    Fullam E; Westwood IM; Anderton MC; Lowe ED; Sim E; Noble ME
    J Mol Biol; 2008 Jan; 375(1):178-91. PubMed ID: 18005984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of Escherichia coli crotonobetainyl-CoA: carnitine CoA-transferase (CaiB) and its complexes with CoA and carnitinyl-CoA.
    Rangarajan ES; Li Y; Iannuzzi P; Cygler M; Matte A
    Biochemistry; 2005 Apr; 44(15):5728-38. PubMed ID: 15823031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol.
    Johnson CM; Roderick SL; Cook PF
    Arch Biochem Biophys; 2005 Jan; 433(1):85-95. PubMed ID: 15581568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth factor and acetyl-L-carnitine evoked shifts in acetyl-CoA and cholinergic SN56 cell vulnerability to neurotoxic inputs.
    Szutowicz A; Bielarczyk H; Gul S; Zieliński P; Pawełczyk T; Tomaszewicz M
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):185-92. PubMed ID: 15558747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of 3-hydroxy-3-methylglutaryl-coenzyme A lyase arginine-41 as a catalytic residue: use of acetyldithio-coenzyme A to monitor product enolization.
    Tuinstra RL; Wang CZ; Mitchell GA; Miziorko HM
    Biochemistry; 2004 May; 43(18):5287-95. PubMed ID: 15122894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of human glutaryl-CoA dehydrogenase with and without an alternate substrate: structural bases of dehydrogenation and decarboxylation reactions.
    Fu Z; Wang M; Paschke R; Rao KS; Frerman FE; Kim JJ
    Biochemistry; 2004 Aug; 43(30):9674-84. PubMed ID: 15274622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.