These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 17144657)
1. High-affinity and cooperative binding of oxidized calmodulin by methionine sulfoxide reductase. Xiong Y; Chen B; Smallwood HS; Urbauer RJ; Markille LM; Galeva N; Williams TD; Squier TC Biochemistry; 2006 Dec; 45(49):14642-54. PubMed ID: 17144657 [TBL] [Abstract][Full Text] [Related]
2. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Sun H; Gao J; Ferrington DA; Biesiada H; Williams TD; Squier TC Biochemistry; 1999 Jan; 38(1):105-12. PubMed ID: 9890888 [TBL] [Abstract][Full Text] [Related]
3. Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases. Tsvetkov PO; Ezraty B; Mitchell JK; Devred F; Peyrot V; Derrick PJ; Barras F; Makarov AA; Lafitte D Biochimie; 2005 May; 87(5):473-80. PubMed ID: 15820754 [TBL] [Abstract][Full Text] [Related]
4. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Yao Y; Yin D; Jas GS; Kuczer K; Williams TD; Schöneich C; Squier TC Biochemistry; 1996 Feb; 35(8):2767-87. PubMed ID: 8611584 [TBL] [Abstract][Full Text] [Related]
5. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase. Chen B; Mayer MU; Squier TC Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900 [TBL] [Abstract][Full Text] [Related]
6. Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Lin Z; Johnson LC; Weissbach H; Brot N; Lively MO; Lowther WT Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9597-602. PubMed ID: 17535911 [TBL] [Abstract][Full Text] [Related]
7. Subcellular localization of methionine sulphoxide reductase A (MsrA): evidence for mitochondrial and cytosolic isoforms in rat liver cells. Vougier S; Mary J; Friguet B Biochem J; 2003 Jul; 373(Pt 2):531-7. PubMed ID: 12693988 [TBL] [Abstract][Full Text] [Related]
8. Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase. Bartlett RK; Bieber Urbauer RJ; Anbanandam A; Smallwood HS; Urbauer JL; Squier TC Biochemistry; 2003 Mar; 42(11):3231-8. PubMed ID: 12641454 [TBL] [Abstract][Full Text] [Related]
9. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases. Vougier S; Mary J; Dautin N; Vinh J; Friguet B; Ladant D J Biol Chem; 2004 Jul; 279(29):30210-8. PubMed ID: 15148319 [TBL] [Abstract][Full Text] [Related]
10. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Zhang XH; Weissbach H Biol Rev Camb Philos Soc; 2008 Aug; 83(3):249-57. PubMed ID: 18557976 [TBL] [Abstract][Full Text] [Related]
11. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. Ezraty B; Grimaud R; El Hassouni M; Moinier D; Barras F EMBO J; 2004 Apr; 23(8):1868-77. PubMed ID: 15057280 [TBL] [Abstract][Full Text] [Related]
12. Oxidation of methionine 35 reduces toxicity of the amyloid beta-peptide(1-42) in neuroblastoma cells (IMR-32) via enzyme methionine sulfoxide reductase A expression and function. Misiti F; Clementi ME; Giardina B Neurochem Int; 2010 Mar; 56(4):597-602. PubMed ID: 20060866 [TBL] [Abstract][Full Text] [Related]
13. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. Bigelow DJ; Squier TC Mol Biosyst; 2011 Jul; 7(7):2101-9. PubMed ID: 21594273 [TBL] [Abstract][Full Text] [Related]
14. Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. Ezraty B; Bos J; Barras F; Aussel L J Bacteriol; 2005 Jan; 187(1):231-7. PubMed ID: 15601707 [TBL] [Abstract][Full Text] [Related]
15. Solution structure and backbone dynamics of the reduced form and an oxidized form of E. coli methionine sulfoxide reductase A (MsrA): structural insight of the MsrA catalytic cycle. Coudevylle N; Antoine M; Bouguet-Bonnet S; Mutzenhardt P; Boschi-Muller S; Branlant G; Cung MT J Mol Biol; 2007 Feb; 366(1):193-206. PubMed ID: 17157315 [TBL] [Abstract][Full Text] [Related]
17. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin. Anbanandam A; Bieber Urbauer RJ; Bartlett RK; Smallwood HS; Squier TC; Urbauer JL Biochemistry; 2005 Jul; 44(27):9486-96. PubMed ID: 15996103 [TBL] [Abstract][Full Text] [Related]
18. Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution. Kim HY; Gladyshev VN Biochemistry; 2005 Jun; 44(22):8059-67. PubMed ID: 15924425 [TBL] [Abstract][Full Text] [Related]
19. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin. Jas GS; Kuczera K Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694 [TBL] [Abstract][Full Text] [Related]
20. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin. Boschek CB; Jones TE; Smallwood HS; Squier TC; Bigelow DJ Biochemistry; 2008 Jan; 47(1):131-42. PubMed ID: 18076146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]