These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17144674)

  • 41. C-terminal Domain of Leucyl-tRNA Synthetase from Pathogenic Candida albicans Recognizes both tRNASer and tRNALeu.
    Ji QQ; Fang ZP; Ye Q; Ruan ZR; Zhou XL; Wang ED
    J Biol Chem; 2016 Feb; 291(7):3613-25. PubMed ID: 26677220
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for its activity.
    Li T; Guo N; Xia X; Wang ED; Wang YL
    Biochemistry; 1999 Oct; 38(40):13063-9. PubMed ID: 10529176
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Leucyl-tRNA synthetase controls TORC1 via the EGO complex.
    Bonfils G; Jaquenoud M; Bontron S; Ostrowicz C; Ungermann C; De Virgilio C
    Mol Cell; 2012 Apr; 46(1):105-10. PubMed ID: 22424774
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase.
    Mascarenhas AP; Martinis SA
    Biochemistry; 2008 Apr; 47(16):4808-16. PubMed ID: 18363380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing.
    Hu QH; Huang Q; Wang ED
    Nucleic Acids Res; 2013 Feb; 41(3):1859-72. PubMed ID: 23268443
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles.
    Seiradake E; Mao W; Hernandez V; Baker SJ; Plattner JJ; Alley MR; Cusack S
    J Mol Biol; 2009 Jul; 390(2):196-207. PubMed ID: 19426743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism.
    Zhai Y; Martinis SA
    Biochemistry; 2005 Nov; 44(47):15437-43. PubMed ID: 16300391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A unique insert of leucyl-tRNA synthetase is required for aminoacylation and not amino acid editing.
    Vu MT; Martinis SA
    Biochemistry; 2007 May; 46(17):5170-6. PubMed ID: 17407263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leucine-specific domain modulates the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase.
    Yan W; Tan M; Eriani G; Wang ED
    Nucleic Acids Res; 2013 May; 41(9):4988-98. PubMed ID: 23525458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. E292 is important for the aminoacylation activity of Escherichia coli leucyl-tRNA synthetase.
    Du X; Wang ED
    J Protein Chem; 2003 Jan; 22(1):71-6. PubMed ID: 12739900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A molecular dynamics simulation study of amino acid selectivity of LeuRS editing domain from Thermus thermophilus.
    Rayevsky A; Sharifi M; Tukalo M
    J Mol Graph Model; 2018 Sep; 84():74-81. PubMed ID: 29935476
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A paradigm shift for the amino acid editing mechanism of human cytoplasmic leucyl-tRNA synthetase.
    Pang YL; Martinis SA
    Biochemistry; 2009 Sep; 48(38):8958-64. PubMed ID: 19702327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex.
    Ling C; Yao YN; Zheng YG; Wei H; Wang L; Wu XF; Wang ED
    J Biol Chem; 2005 Oct; 280(41):34755-63. PubMed ID: 16055448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LeuRS synthetase: a first-principles investigation of the water-mediated editing reaction.
    Boero M
    J Phys Chem B; 2011 Oct; 115(42):12276-86. PubMed ID: 21923161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Chemical modification of tryptophan residues of leucyl tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide].
    Korneliuk AI; Shilin VV; Gudzera OI; Rozhko OT; Matsuka GKh
    Bioorg Khim; 1985 May; 11(5):605-12. PubMed ID: 3929794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase.
    Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA
    Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase.
    Palencia A; Crépin T; Vu MT; Lincecum TL; Martinis SA; Cusack S
    Nat Struct Mol Biol; 2012 Jun; 19(7):677-84. PubMed ID: 22683997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue.
    Cusack S; Yaremchuk A; Tukalo M
    EMBO J; 2000 May; 19(10):2351-61. PubMed ID: 10811626
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aminoacylation and translational quality control strategy employed by leucyl-tRNA synthetase from a human pathogen with genetic code ambiguity.
    Zhou XL; Fang ZP; Ruan ZR; Wang M; Liu RJ; Tan M; Anella FM; Wang ED
    Nucleic Acids Res; 2013 Nov; 41(21):9825-38. PubMed ID: 23969415
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.