These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 17144685)
1. A graph-theoretic method for detecting potential Turing bifurcations. Mincheva M; Roussel MR J Chem Phys; 2006 Nov; 125(20):204102. PubMed ID: 17144685 [TBL] [Abstract][Full Text] [Related]
2. Turing-Hopf instability in biochemical reaction networks arising from pairs of subnetworks. Mincheva M; Roussel MR Math Biosci; 2012 Nov; 240(1):1-11. PubMed ID: 22698892 [TBL] [Abstract][Full Text] [Related]
3. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mincheva M; Craciun G Math Biosci Eng; 2013 Aug; 10(4):1207-26. PubMed ID: 23906208 [TBL] [Abstract][Full Text] [Related]
4. Turing patterns beyond hexagons and stripes. Yang L; Dolnik M; Zhabotinsky AM; Epstein IR Chaos; 2006 Sep; 16(3):037114. PubMed ID: 17014248 [TBL] [Abstract][Full Text] [Related]
5. Pattern formation in an N+Q component reaction-diffusion system. Pearson JE; Bruno WJ Chaos; 1992 Oct; 2(4):513-524. PubMed ID: 12780000 [TBL] [Abstract][Full Text] [Related]
7. Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models. Mincheva M; Roussel MR J Math Biol; 2007 Jul; 55(1):61-86. PubMed ID: 17541594 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear effects on Turing patterns: time oscillations and chaos. Aragón JL; Barrio RA; Woolley TE; Baker RE; Maini PK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026201. PubMed ID: 23005839 [TBL] [Abstract][Full Text] [Related]
9. Adapting the nudged elastic band method for determining minimum-energy paths of chemical reactions in enzymes. Xie L; Liu H; Yang W J Chem Phys; 2004 May; 120(17):8039-52. PubMed ID: 15267723 [TBL] [Abstract][Full Text] [Related]
11. Exploring multiplicity conditions in enzymatic reaction networks. Otero-Muras I; Banga JR; Alonso AA Biotechnol Prog; 2009; 25(3):619-31. PubMed ID: 19496142 [TBL] [Abstract][Full Text] [Related]
12. Time-delay-induced instabilities in reaction-diffusion systems. Sen S; Ghosh P; Riaz SS; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046212. PubMed ID: 19905420 [TBL] [Abstract][Full Text] [Related]
13. Implications of the Turing completeness of reaction-diffusion models, informed by GPGPU simulations on an XBox 360: cardiac arrhythmias, re-entry and the Halting problem. Scarle S Comput Biol Chem; 2009 Aug; 33(4):253-60. PubMed ID: 19577519 [TBL] [Abstract][Full Text] [Related]
14. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation. Chaudhury S; Cherayil BJ J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782 [TBL] [Abstract][Full Text] [Related]
15. Effects of cross diffusion on Turing bifurcations in two-species reaction-transport systems. Kumar N; Horsthemke W Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036105. PubMed ID: 21517556 [TBL] [Abstract][Full Text] [Related]
16. Efficiency function for comparing catalytic competence. Ceccarelli EA; Carrillo N; Roveri OA Trends Biotechnol; 2008 Mar; 26(3):117-8. PubMed ID: 18222558 [No Abstract] [Full Text] [Related]
17. Rapid measurement of three-dimensional diffusion tensor. Cho H; Ren XH; Sigmund EE; Song YQ J Chem Phys; 2007 Apr; 126(15):154501. PubMed ID: 17461641 [TBL] [Abstract][Full Text] [Related]